The value of acceleration due to gravity:
A.)is same on equator and poles
B.)is least on poles
C.)is least on equator
D.)increases from pole to equator
Answer
Verified
478.2k+ views
Hint: Using Newton’s law of gravitation find the equation of gravitational constant and acceleration due to gravity. And according to the formula use the relation between acceleration due ro gravity and radius.
Formula used:
$ g=\quad G\dfrac { M }{ { R }_{ E }^{ 2 } }$
Complete step-by-step answer:
Equation of gravitational constant and acceleration due to gravity can be calculated as shown below:
Suppose, a body of mass m is placed on the surface of earth and assumes the shape of the earth to be round. If mass of the earth is M and radius of earth is $ { R }_{ E }$, then by Newton’s law of gravitation we get,
$ F=\quad G\dfrac { Mm }{ { R }_{ E }^{ 2 } }$ …(1)
where, G: Gravitational Constant
Now, from Newton’s Second law of motion,
$ F=\quad mg$ …(2)
where, g: Acceleration due to gravity
From eq.(1) and eq.(2) we get,
$ mg=\quad G\dfrac { Mm }{ { R }_{ E }^{ 2 } }$
$ \therefore \quad g=\quad G\dfrac { M }{ { R }_{ E }^{ 2 } }$
So from the above equation, we can say the value of acceleration due to gravity is least at the maximum radius. Radius is maximum at the equator which means acceleration due to gravity is least at equator.
So, the correct answer is “Option C”.
Note:
As the radius increases acceleration due to gravity decreases. And similarly as the height from the surface of earth increases, acceleration due to gravity decreases. This is given by equation,
$g=\quad G\dfrac { M }{ { ({ R }_{ E }+h) }^{ 2 } } $
where, h: height from the surface of earth
Formula used:
$ g=\quad G\dfrac { M }{ { R }_{ E }^{ 2 } }$
Complete step-by-step answer:
Equation of gravitational constant and acceleration due to gravity can be calculated as shown below:
Suppose, a body of mass m is placed on the surface of earth and assumes the shape of the earth to be round. If mass of the earth is M and radius of earth is $ { R }_{ E }$, then by Newton’s law of gravitation we get,
$ F=\quad G\dfrac { Mm }{ { R }_{ E }^{ 2 } }$ …(1)
where, G: Gravitational Constant
Now, from Newton’s Second law of motion,
$ F=\quad mg$ …(2)
where, g: Acceleration due to gravity
From eq.(1) and eq.(2) we get,
$ mg=\quad G\dfrac { Mm }{ { R }_{ E }^{ 2 } }$
$ \therefore \quad g=\quad G\dfrac { M }{ { R }_{ E }^{ 2 } }$
So from the above equation, we can say the value of acceleration due to gravity is least at the maximum radius. Radius is maximum at the equator which means acceleration due to gravity is least at equator.
So, the correct answer is “Option C”.
Note:
As the radius increases acceleration due to gravity decreases. And similarly as the height from the surface of earth increases, acceleration due to gravity decreases. This is given by equation,
$g=\quad G\dfrac { M }{ { ({ R }_{ E }+h) }^{ 2 } } $
where, h: height from the surface of earth
Recently Updated Pages
How to find how many moles are in an ion I am given class 11 chemistry CBSE
Class 11 Question and Answer - Your Ultimate Solutions Guide
Identify how many lines of symmetry drawn are there class 8 maths CBSE
State true or false If two lines intersect and if one class 8 maths CBSE
Tina had 20m 5cm long cloth She cuts 4m 50cm lengt-class-8-maths-CBSE
Which sentence is punctuated correctly A Always ask class 8 english CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
10 examples of friction in our daily life
What problem did Carter face when he reached the mummy class 11 english CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE