
The value of $ 1eV{\text{ato}}{{\text{m}}^{ - 1}} $ is:
(A) $ 23.06{\text{ }}kcalmo{l^{ - 1}} $
(B) $ 96.45{\text{ }}kJmo{l^{ - 1}} $
(C) $ 1.602 \times {10^{ - 19}}{\text{ }}Jato{m^{ - 1}} $
(D) All of these
Answer
506.4k+ views
Hint : $ 1eV $ is defined as the energy gained by an electron when it has been accelerated by a potential difference of $ 1 $ volt. The work function of $ 1eV $ mainly depends on the properties of the metal and is highest for platinum with $ 5.65eV $ and lowest for caesium with $ 2.14eV $ .
Complete Step By Step Answer:
We know, $ 1eV = 1.602 \times {10^{ - 19}}J $
$\therefore 1eV{\text{ato}}{{\text{m}}^{ - 1}} = 1.602 \times {10^{ -19}}J{\text{ato}}{{\text{m}}^{ - 1}} $
$\therefore 1eV{\text{ato}}{{\text{m}}^{ - 1}} = 1.602 \times {10^{ - 19}} \times 6.022 \times {10^{23}}J{\text{mo}}{{\text{l}}^{ - 1}} $
$\therefore 1eV{\text{ato}}{{\text{m}}^{ - 1}} = 96.45kJ{\text{mo}}{{\text{l}}^{ - 1}} $
$\therefore 1eV{\text{ato}}{{\text{m}}^{ - 1}} = \dfrac{{96.45}}{{4.18}}Kcalmo{l^{ - 1}} $
$\therefore 1eV{\text{ato}}{{\text{m}}^{ - 1}} = 23.06Kcal{\text{mo}}{{\text{l}}^{ - 1}} $
Therefore, from the above expressions we can conclude that option (d) All of these is the correct answer.
Note :
To convert $ 1eVato{m^{ - 1}} $ to $ Kcal\;Mo{l^{ - 1}} $ , first convert it to $ Jmo{l^{ - 1}} $ using $ 1eV = 1.602 \times {10^{ - 19}}Jato{m^{ - 1}} $ and then multiply by Avogadro’s number $ 6.022 \times {10^{23}} $ . Now to convert the $ KJ $ into $ Kcal\;Mo{l^{ - 1}} $ , divide by $ 4.18 $ .
Complete Step By Step Answer:
We know, $ 1eV = 1.602 \times {10^{ - 19}}J $
$\therefore 1eV{\text{ato}}{{\text{m}}^{ - 1}} = 1.602 \times {10^{ -19}}J{\text{ato}}{{\text{m}}^{ - 1}} $
$\therefore 1eV{\text{ato}}{{\text{m}}^{ - 1}} = 1.602 \times {10^{ - 19}} \times 6.022 \times {10^{23}}J{\text{mo}}{{\text{l}}^{ - 1}} $
$\therefore 1eV{\text{ato}}{{\text{m}}^{ - 1}} = 96.45kJ{\text{mo}}{{\text{l}}^{ - 1}} $
$\therefore 1eV{\text{ato}}{{\text{m}}^{ - 1}} = \dfrac{{96.45}}{{4.18}}Kcalmo{l^{ - 1}} $
$\therefore 1eV{\text{ato}}{{\text{m}}^{ - 1}} = 23.06Kcal{\text{mo}}{{\text{l}}^{ - 1}} $
Therefore, from the above expressions we can conclude that option (d) All of these is the correct answer.
Note :
To convert $ 1eVato{m^{ - 1}} $ to $ Kcal\;Mo{l^{ - 1}} $ , first convert it to $ Jmo{l^{ - 1}} $ using $ 1eV = 1.602 \times {10^{ - 19}}Jato{m^{ - 1}} $ and then multiply by Avogadro’s number $ 6.022 \times {10^{23}} $ . Now to convert the $ KJ $ into $ Kcal\;Mo{l^{ - 1}} $ , divide by $ 4.18 $ .
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

