
The value $1 + {i^2} + {i^4} + {i^6} + {i^8} + ..........{i^{2n}}$ is
A.Positive
B.Negative
C.Zero
D.Cannot be determined
Answer
483k+ views
Hint: First we’ll find different terms of the given expression, from there we’ll find the similarity, of the terms of the expression like some constant reoccurring terms.
After finding the expression we’ll find the value of the expression for different values of n, as n is not defined so it can be even or odd, so we make 2 cases and solve for both.
Complete step-by-step answer:
Given data: the expression $1 + {i^2} + {i^4} + {i^6} + {i^8} + ..........{i^{2n}}$
We know that, ${i^2} = - 1........(i)$
Squaring both the sides
$ \Rightarrow {i^4} = 1.......(ii)$
Multiplying equation(i) and (ii)
$ \Rightarrow {i^6} = - 1........(iii)$
Multiplying equation(i) and (iii)
$ \Rightarrow {i^8} = 1........(iv)$
on concluding from the above equation we can say that the expression terms are only 1 and -1 occurring alternatively
i.e. $1 + {i^2} + {i^4} + {i^6} + {i^8} + ..........{i^{2n}} = 1 + ( - 1) + 1 + ( - 1) + 1 + ( - 1) + ....{i^{2n}}$
now, we can write as ${i^{2n}} = {\left( {{i^2}} \right)^n}$
${i^{2n}} = {\left( { - 1} \right)^n}$
It is well known that ${\left( { - 1} \right)^a}$ is equal to 1 if a is even number and is equal to (-1) if a is odd
now if n is an even number in the expression, then the expression will end with 1
i.e. $1 + {i^2} + {i^4} + {i^6} + {i^8} + ..........{i^{2n}} = 1 + ( - 1) + 1 + ( - 1) + 1 + ( - 1) + ....1$
$\therefore 1 + {i^2} + {i^4} + {i^6} + {i^8} + ..........{i^{2n}} = 1$
if n is an odd number in the expression, then the expression will end with (-1)
i.e. $1 + {i^2} + {i^4} + {i^6} + {i^8} + ..........{i^{2n}} = 1 + ( - 1) + 1 + ( - 1) + 1 + ( - 1) + ....1 + ( - 1)$
$\therefore 1 + {i^2} + {i^4} + {i^6} + {i^8} + ..........{i^{2n}} = 0$
Therefore from the above equation, we conclude that the value of the given expression depends on the value on n and hence cannot be determined.
Option(D) is correct.
Note: An alternative method for this solution can be
We can see that the expression $1 + {i^2} + {i^4} + {i^6} + {i^8} + ..........{i^{2n}}$is a G.P. with a common ratio ${i^2}$
We know that the sum of first n terms of a G.P. with the first term as a and common ratio as r
${S_n} = a\dfrac{{\left( {{r^n} - 1} \right)}}{{\left( {r - 1} \right)}}$
Therefore for the expression, $1 + {i^2} + {i^4} + {i^6} + {i^8} + ..........{i^{2n}} = 1\dfrac{{({{\left( {{i^2}} \right)}^{n + 1}} - 1)}}{{({i^2} - 1)}}$
Using ${i^2} = - 1$
$ = \dfrac{{({{\left( { - 1} \right)}^{n + 1}} - 1)}}{{( - 1 - 1)}}$
$ = \dfrac{{({{\left( { - 1} \right)}^{n + 1}} - 1)}}{{ - 2}}$
Now if n is even, (n+1) will be odd and ${\left( { - 1} \right)^{n + 1}} = - 1$
\[\therefore \dfrac{{({{\left( { - 1} \right)}^{n + 1}} - 1)}}{{ - 2}} = \dfrac{{( - 1 - 1)}}{{ - 2}}\]
\[ = 1\]
And if n is odd, (n+1) will be even and ${\left( { - 1} \right)^{n + 1}} = 1$
\[\therefore \dfrac{{({{\left( { - 1} \right)}^{n + 1}} - 1)}}{{ - 2}} = \dfrac{{(1 - 1)}}{{ - 2}}\]
\[ = 0\]
Hence, cannot be determined.
After finding the expression we’ll find the value of the expression for different values of n, as n is not defined so it can be even or odd, so we make 2 cases and solve for both.
Complete step-by-step answer:
Given data: the expression $1 + {i^2} + {i^4} + {i^6} + {i^8} + ..........{i^{2n}}$
We know that, ${i^2} = - 1........(i)$
Squaring both the sides
$ \Rightarrow {i^4} = 1.......(ii)$
Multiplying equation(i) and (ii)
$ \Rightarrow {i^6} = - 1........(iii)$
Multiplying equation(i) and (iii)
$ \Rightarrow {i^8} = 1........(iv)$
on concluding from the above equation we can say that the expression terms are only 1 and -1 occurring alternatively
i.e. $1 + {i^2} + {i^4} + {i^6} + {i^8} + ..........{i^{2n}} = 1 + ( - 1) + 1 + ( - 1) + 1 + ( - 1) + ....{i^{2n}}$
now, we can write as ${i^{2n}} = {\left( {{i^2}} \right)^n}$
${i^{2n}} = {\left( { - 1} \right)^n}$
It is well known that ${\left( { - 1} \right)^a}$ is equal to 1 if a is even number and is equal to (-1) if a is odd
now if n is an even number in the expression, then the expression will end with 1
i.e. $1 + {i^2} + {i^4} + {i^6} + {i^8} + ..........{i^{2n}} = 1 + ( - 1) + 1 + ( - 1) + 1 + ( - 1) + ....1$
$\therefore 1 + {i^2} + {i^4} + {i^6} + {i^8} + ..........{i^{2n}} = 1$
if n is an odd number in the expression, then the expression will end with (-1)
i.e. $1 + {i^2} + {i^4} + {i^6} + {i^8} + ..........{i^{2n}} = 1 + ( - 1) + 1 + ( - 1) + 1 + ( - 1) + ....1 + ( - 1)$
$\therefore 1 + {i^2} + {i^4} + {i^6} + {i^8} + ..........{i^{2n}} = 0$
Therefore from the above equation, we conclude that the value of the given expression depends on the value on n and hence cannot be determined.
Option(D) is correct.
Note: An alternative method for this solution can be
We can see that the expression $1 + {i^2} + {i^4} + {i^6} + {i^8} + ..........{i^{2n}}$is a G.P. with a common ratio ${i^2}$
We know that the sum of first n terms of a G.P. with the first term as a and common ratio as r
${S_n} = a\dfrac{{\left( {{r^n} - 1} \right)}}{{\left( {r - 1} \right)}}$
Therefore for the expression, $1 + {i^2} + {i^4} + {i^6} + {i^8} + ..........{i^{2n}} = 1\dfrac{{({{\left( {{i^2}} \right)}^{n + 1}} - 1)}}{{({i^2} - 1)}}$
Using ${i^2} = - 1$
$ = \dfrac{{({{\left( { - 1} \right)}^{n + 1}} - 1)}}{{( - 1 - 1)}}$
$ = \dfrac{{({{\left( { - 1} \right)}^{n + 1}} - 1)}}{{ - 2}}$
Now if n is even, (n+1) will be odd and ${\left( { - 1} \right)^{n + 1}} = - 1$
\[\therefore \dfrac{{({{\left( { - 1} \right)}^{n + 1}} - 1)}}{{ - 2}} = \dfrac{{( - 1 - 1)}}{{ - 2}}\]
\[ = 1\]
And if n is odd, (n+1) will be even and ${\left( { - 1} \right)^{n + 1}} = 1$
\[\therefore \dfrac{{({{\left( { - 1} \right)}^{n + 1}} - 1)}}{{ - 2}} = \dfrac{{(1 - 1)}}{{ - 2}}\]
\[ = 0\]
Hence, cannot be determined.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success

Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE

The highest possible oxidation states of Uranium and class 11 chemistry CBSE

Find the value of x if the mode of the following data class 11 maths CBSE

Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE

A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

State and prove Bernoullis theorem class 11 physics CBSE

What organs are located on the left side of your body class 11 biology CBSE

The combining capacity of an element is known as i class 11 chemistry CBSE
