
The two vectors \[a\] and \[b\] are perpendicular. If \[a\] has magnitude 8 and \[b\] has magnitude 3. What is \[\left| {a - 2b} \right|\]?
Answer
564k+ views
Hint: First we will take square of the given expression \[\left| {a - 2b} \right|\]. Then we will use the rule \[\vec a \cdot \vec a = {\left| {\vec a} \right|^2}\] and \[\vec b \cdot \vec a = \vec a \cdot \vec b\] in the obtained equation. Then simplify it to find the required value.
Complete step-by-step answer:
We are given that the two vectors \[a\] and \[b\] are perpendicular, \[\left| {\vec a} \right| = 8\] and \[\left| {\vec b} \right| = 3\].
Since we know that \[\vec a\] and \[\vec b\] are perpendicular, so \[\vec a \cdot \vec b = 0\].
Taking square of the given expression \[\left| {a - 2b} \right|\], we get
\[ \Rightarrow {\left| {\vec a - 2\vec b} \right|^2} = \left( {\vec a - 2\vec b} \right) \cdot \left( {\vec a - 2\vec b} \right)\]
Simplifying the right hand side of the above equation, we get
\[ \Rightarrow {\left| {\vec a - 2\vec b} \right|^2} = \vec a \cdot \vec a - 2 \cdot \vec b \cdot \vec a - 2 \cdot \vec a \cdot \vec b + 4\vec b \cdot \vec b\]
Using the rule, \[\vec a \cdot \vec a = {\left| {\vec a} \right|^2}\] in the above equation, we get
\[ \Rightarrow {\left| {\vec a - 2\vec b} \right|^2} = {\left| {\vec a} \right|^2} - 2 \cdot \vec b \cdot \vec a - 2 \cdot \vec a \cdot \vec b + 4{\left| {\vec b} \right|^2}\]
Using the rule, \[\vec b \cdot \vec a = \vec a \cdot \vec b\] in the above equation, we get
\[
\Rightarrow {\left| {\vec a - 2\vec b} \right|^2} = {\left| {\vec a} \right|^2} - 2 \cdot \vec a \cdot \vec b - 2 \cdot \vec a \cdot \vec b + 4{\left| {\vec b} \right|^2} \\
\Rightarrow {\left| {\vec a - 2\vec b} \right|^2} = {\left| {\vec a} \right|^2} - 4\vec a \cdot \vec b + 4{\left| {\vec b} \right|^2} \\
\]
Substituting the values \[\left| {\vec a} \right| = 8\] , \[\left| {\vec b} \right| = 3\] and \[\vec a \cdot \vec b = 0\] in the above equation, we get
\[
\Rightarrow {\left| {\vec a - 2\vec b} \right|^2} = {8^2} - 4\left( 0 \right) + 4\left( {{3^2}} \right) \\
\Rightarrow {\left| {\vec a - 2\vec b} \right|^2} = 64 - 0 + 4 \cdot 9 \\
\Rightarrow {\left| {\vec a - 2\vec b} \right|^2} = 64 + 36 \\
\Rightarrow {\left| {\vec a - 2\vec b} \right|^2} = 100 \\
\]
Taking square root on both sides of the above equation, we get
\[
\Rightarrow \left| {\vec a - 2\vec b} \right| = \pm \sqrt {100} \\
\Rightarrow \left| {\vec a - 2\vec b} \right| = \pm 10 \\
\]
Since the magnitude can never be negative, the negative value of \[\left| {\vec a - 2\vec b} \right|\] is discarded.
Therefore, 10 is the required value.
Note: One should know that the magnitude of a vector is the length of a line segment and the vector, which has a magnitude of 1 is known as the unit vector. The key point is to use the rules \[\vec a \cdot \vec a = {\left| {\vec a} \right|^2}\] and \[\vec b \cdot \vec a = \vec a \cdot \vec b\] to simplify. We need to know that when two vectors are perpendicular, then their dot product is always zero or else the answer will be wrong.
Complete step-by-step answer:
We are given that the two vectors \[a\] and \[b\] are perpendicular, \[\left| {\vec a} \right| = 8\] and \[\left| {\vec b} \right| = 3\].
Since we know that \[\vec a\] and \[\vec b\] are perpendicular, so \[\vec a \cdot \vec b = 0\].
Taking square of the given expression \[\left| {a - 2b} \right|\], we get
\[ \Rightarrow {\left| {\vec a - 2\vec b} \right|^2} = \left( {\vec a - 2\vec b} \right) \cdot \left( {\vec a - 2\vec b} \right)\]
Simplifying the right hand side of the above equation, we get
\[ \Rightarrow {\left| {\vec a - 2\vec b} \right|^2} = \vec a \cdot \vec a - 2 \cdot \vec b \cdot \vec a - 2 \cdot \vec a \cdot \vec b + 4\vec b \cdot \vec b\]
Using the rule, \[\vec a \cdot \vec a = {\left| {\vec a} \right|^2}\] in the above equation, we get
\[ \Rightarrow {\left| {\vec a - 2\vec b} \right|^2} = {\left| {\vec a} \right|^2} - 2 \cdot \vec b \cdot \vec a - 2 \cdot \vec a \cdot \vec b + 4{\left| {\vec b} \right|^2}\]
Using the rule, \[\vec b \cdot \vec a = \vec a \cdot \vec b\] in the above equation, we get
\[
\Rightarrow {\left| {\vec a - 2\vec b} \right|^2} = {\left| {\vec a} \right|^2} - 2 \cdot \vec a \cdot \vec b - 2 \cdot \vec a \cdot \vec b + 4{\left| {\vec b} \right|^2} \\
\Rightarrow {\left| {\vec a - 2\vec b} \right|^2} = {\left| {\vec a} \right|^2} - 4\vec a \cdot \vec b + 4{\left| {\vec b} \right|^2} \\
\]
Substituting the values \[\left| {\vec a} \right| = 8\] , \[\left| {\vec b} \right| = 3\] and \[\vec a \cdot \vec b = 0\] in the above equation, we get
\[
\Rightarrow {\left| {\vec a - 2\vec b} \right|^2} = {8^2} - 4\left( 0 \right) + 4\left( {{3^2}} \right) \\
\Rightarrow {\left| {\vec a - 2\vec b} \right|^2} = 64 - 0 + 4 \cdot 9 \\
\Rightarrow {\left| {\vec a - 2\vec b} \right|^2} = 64 + 36 \\
\Rightarrow {\left| {\vec a - 2\vec b} \right|^2} = 100 \\
\]
Taking square root on both sides of the above equation, we get
\[
\Rightarrow \left| {\vec a - 2\vec b} \right| = \pm \sqrt {100} \\
\Rightarrow \left| {\vec a - 2\vec b} \right| = \pm 10 \\
\]
Since the magnitude can never be negative, the negative value of \[\left| {\vec a - 2\vec b} \right|\] is discarded.
Therefore, 10 is the required value.
Note: One should know that the magnitude of a vector is the length of a line segment and the vector, which has a magnitude of 1 is known as the unit vector. The key point is to use the rules \[\vec a \cdot \vec a = {\left| {\vec a} \right|^2}\] and \[\vec b \cdot \vec a = \vec a \cdot \vec b\] to simplify. We need to know that when two vectors are perpendicular, then their dot product is always zero or else the answer will be wrong.
Recently Updated Pages
Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which type of resource is iron ore A Renewable B Biotic class 11 social science CBSE

10 examples of friction in our daily life

Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

