Answer

Verified

472.8k+ views

Hint: The given problem is related to the value of sine and cosine of an angle in the third quadrant. Sine and cosine function are negative in the third quadrant. Use this property to find the lengths of the legs of the right triangle. Then use the Pythagoras theorem to determine the length of its hypotenuse.

Complete step-by-step answer:

We know, any angle in the third quadrant is of the form $\left( \dfrac{3\pi }{2}-\theta \right)$ . We also know that sine and cosine functions are negative in the third quadrant. So, the value of $\sin \left( \dfrac{3\pi }{2}-\theta \right)$ will be $-\cos \theta $ and the value of $\cos \left( \dfrac{3\pi }{2}-\theta \right)$ will be $-\sin \theta $ . Now, the length of the legs of the right triangle are given as $\sin \theta +\sin \left( \dfrac{3\pi }{2}-\theta \right)$ and $\cos \theta -\cos \left( \dfrac{3\pi }{2}-\theta \right)$ . But we know that the value of $\sin \left( \dfrac{3\pi }{2}-\theta \right)$ is $-\cos \theta $ and the value of $\cos \left( \dfrac{3\pi }{2}-\theta \right)$ is $-\sin \theta $ . So, the length of the legs of the right triangle are $\sin \theta -\cos \theta $ and $\cos \theta +\sin \theta $ .

Now, we need to find the length of its hypotenuse. We know, the Pythagoras theorem states that in a right-angled triangle, the square of the hypotenuse is equal to the sum of the squares of the perpendicular sides. So, if $a,b$ and $c$ are the lengths of sides of a right triangle such that $c>b,a$ , then according to the Pythagoras theorem, ${{c}^{2}}={{a}^{2}}+{{b}^{2}}$ .

Now, in the given right triangle, the length of the legs are $\sin \theta -\cos \theta $ and $\cos \theta +\sin \theta $ . Let $h$ be the length of the hypotenuse. So, according to the Pythagoras theorem, \[{{h}^{2}}={{\left( \sin \theta -\cos \theta \right)}^{2}}+{{\left( \cos \theta +\sin \theta \right)}^{2}}\].

$\Rightarrow {{h}^{2}}={{\sin }^{2}}\theta +{{\cos }^{2}}\theta -2\sin \theta \cos \theta +{{\cos }^{2}}\theta +{{\sin }^{2}}\theta +2\sin \theta \cos \theta $

Now, we know ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$ . So, ${{h}^{2}}=1+1=2$ .

$\Rightarrow h=\sqrt{2}$

Hence, the length of the hypotenuse is $\sqrt{2}$ . Hence, option B. is the correct option.

Note: Some students get confused and write ${{\sin }^{2}}\theta -{{\cos }^{2}}\theta =1$ instead of ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$. Such mistakes should be avoided as it can result in getting wrong answers.

Complete step-by-step answer:

We know, any angle in the third quadrant is of the form $\left( \dfrac{3\pi }{2}-\theta \right)$ . We also know that sine and cosine functions are negative in the third quadrant. So, the value of $\sin \left( \dfrac{3\pi }{2}-\theta \right)$ will be $-\cos \theta $ and the value of $\cos \left( \dfrac{3\pi }{2}-\theta \right)$ will be $-\sin \theta $ . Now, the length of the legs of the right triangle are given as $\sin \theta +\sin \left( \dfrac{3\pi }{2}-\theta \right)$ and $\cos \theta -\cos \left( \dfrac{3\pi }{2}-\theta \right)$ . But we know that the value of $\sin \left( \dfrac{3\pi }{2}-\theta \right)$ is $-\cos \theta $ and the value of $\cos \left( \dfrac{3\pi }{2}-\theta \right)$ is $-\sin \theta $ . So, the length of the legs of the right triangle are $\sin \theta -\cos \theta $ and $\cos \theta +\sin \theta $ .

Now, we need to find the length of its hypotenuse. We know, the Pythagoras theorem states that in a right-angled triangle, the square of the hypotenuse is equal to the sum of the squares of the perpendicular sides. So, if $a,b$ and $c$ are the lengths of sides of a right triangle such that $c>b,a$ , then according to the Pythagoras theorem, ${{c}^{2}}={{a}^{2}}+{{b}^{2}}$ .

Now, in the given right triangle, the length of the legs are $\sin \theta -\cos \theta $ and $\cos \theta +\sin \theta $ . Let $h$ be the length of the hypotenuse. So, according to the Pythagoras theorem, \[{{h}^{2}}={{\left( \sin \theta -\cos \theta \right)}^{2}}+{{\left( \cos \theta +\sin \theta \right)}^{2}}\].

$\Rightarrow {{h}^{2}}={{\sin }^{2}}\theta +{{\cos }^{2}}\theta -2\sin \theta \cos \theta +{{\cos }^{2}}\theta +{{\sin }^{2}}\theta +2\sin \theta \cos \theta $

Now, we know ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$ . So, ${{h}^{2}}=1+1=2$ .

$\Rightarrow h=\sqrt{2}$

Hence, the length of the hypotenuse is $\sqrt{2}$ . Hence, option B. is the correct option.

Note: Some students get confused and write ${{\sin }^{2}}\theta -{{\cos }^{2}}\theta =1$ instead of ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$. Such mistakes should be avoided as it can result in getting wrong answers.

Recently Updated Pages

How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE

Mark and label the given geoinformation on the outline class 11 social science CBSE

When people say No pun intended what does that mea class 8 english CBSE

Name the states which share their boundary with Indias class 9 social science CBSE

Give an account of the Northern Plains of India class 9 social science CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Trending doubts

Difference Between Plant Cell and Animal Cell

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Which are the Top 10 Largest Countries of the World?

One cusec is equal to how many liters class 8 maths CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

The mountain range which stretches from Gujarat in class 10 social science CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths