
The truth values of $p,q{\text{ and }}r$ for which $\left( {p \wedge q} \right) \vee \left( { \sim r} \right)$ has truth values $F$ are respectively
A.$F,T,F$
B.$F,F,F$
C.$T,T,T$
D.$T,F,F$
E.$F,F,T$
Answer
596.4k+ views
Hint- This question is solved by making truth table of $p,{\text{ }}q,{\text{ }}r,{\text{ }} \sim r,{\text{ }}\left( {p \wedge q} \right){\text{ and }}\left( {p \wedge q} \right) \vee \left( { \sim r} \right)$.
Now given that,
$\left( {p \wedge q} \right) \vee \left( { \sim r} \right)$ has truth values $F$
Now we have to find the truth values of $p,q{\text{ and }}r$
We will find that by using truth table,
Now the possible combinations are ${2^3} = 8$ (Because variables are three.)
Also we know that,
$
\sim {\text{ means }}NOT \\
\wedge {\text{ means }}AND \\
\vee {\text{ means }}OR \\
$
$
p{\text{ }}q{\text{ }}r{\text{ }} \sim r{\text{ }}\left( {p \wedge q} \right){\text{ }}\left( {p \wedge q} \right) \vee \left( { \sim r} \right) \\
T{\text{ }}T{\text{ }}T{\text{ }}F{\text{ }}T{\text{ }}T \\
F{\text{ }}T{\text{ }}T{\text{ }}F{\text{ }}F{\text{ }}F \\
T{\text{ }}F{\text{ }}T{\text{ }}F{\text{ }}F{\text{ }}F \\
F{\text{ }}F{\text{ }}T{\text{ }}F{\text{ }}F{\text{ }}F \\
T{\text{ }}T{\text{ }}F{\text{ }}T{\text{ }}T{\text{ }}T \\
F{\text{ }}T{\text{ }}F{\text{ }}T{\text{ }}F{\text{ }}T \\
T{\text{ }}F{\text{ }}F{\text{ }}T{\text{ }}F{\text{ }}T \\
F{\text{ }}F{\text{ }}F{\text{ }}T{\text{ }}F{\text{ }}T \\
$
Now it is given that $\left( {p \wedge q} \right) \vee \left( { \sim r} \right)$ has truth values $F$ and we have to find the values of $p,q{\text{ and }}r$
when $\left( {p \wedge q} \right) \vee \left( { \sim r} \right)$ has truth values $F$.
Now, from the truth table, we will see the respective values of $p,q{\text{ and }}r$ for $\left( {p \wedge q} \right) \vee \left( { \sim r} \right)$ has truth values $F$.
Therefore, the values of $p,q{\text{ and }}r$ are $F,F,T$ respectively.
Thus, the correct option is (E).
Note- Whenever we face such types of questions the key concept is that we should solve it by using a truth table. In this question we find the values of $p,q{\text{ and }}r$ by making the truth table and then we see the respective values of $p,q{\text{ and }}r$ for $\left( {p \wedge q} \right) \vee \left( { \sim r} \right)$ has truth values $F$.
Now given that,
$\left( {p \wedge q} \right) \vee \left( { \sim r} \right)$ has truth values $F$
Now we have to find the truth values of $p,q{\text{ and }}r$
We will find that by using truth table,
Now the possible combinations are ${2^3} = 8$ (Because variables are three.)
Also we know that,
$
\sim {\text{ means }}NOT \\
\wedge {\text{ means }}AND \\
\vee {\text{ means }}OR \\
$
$
p{\text{ }}q{\text{ }}r{\text{ }} \sim r{\text{ }}\left( {p \wedge q} \right){\text{ }}\left( {p \wedge q} \right) \vee \left( { \sim r} \right) \\
T{\text{ }}T{\text{ }}T{\text{ }}F{\text{ }}T{\text{ }}T \\
F{\text{ }}T{\text{ }}T{\text{ }}F{\text{ }}F{\text{ }}F \\
T{\text{ }}F{\text{ }}T{\text{ }}F{\text{ }}F{\text{ }}F \\
F{\text{ }}F{\text{ }}T{\text{ }}F{\text{ }}F{\text{ }}F \\
T{\text{ }}T{\text{ }}F{\text{ }}T{\text{ }}T{\text{ }}T \\
F{\text{ }}T{\text{ }}F{\text{ }}T{\text{ }}F{\text{ }}T \\
T{\text{ }}F{\text{ }}F{\text{ }}T{\text{ }}F{\text{ }}T \\
F{\text{ }}F{\text{ }}F{\text{ }}T{\text{ }}F{\text{ }}T \\
$
Now it is given that $\left( {p \wedge q} \right) \vee \left( { \sim r} \right)$ has truth values $F$ and we have to find the values of $p,q{\text{ and }}r$
when $\left( {p \wedge q} \right) \vee \left( { \sim r} \right)$ has truth values $F$.
Now, from the truth table, we will see the respective values of $p,q{\text{ and }}r$ for $\left( {p \wedge q} \right) \vee \left( { \sim r} \right)$ has truth values $F$.
Therefore, the values of $p,q{\text{ and }}r$ are $F,F,T$ respectively.
Thus, the correct option is (E).
Note- Whenever we face such types of questions the key concept is that we should solve it by using a truth table. In this question we find the values of $p,q{\text{ and }}r$ by making the truth table and then we see the respective values of $p,q{\text{ and }}r$ for $\left( {p \wedge q} \right) \vee \left( { \sim r} \right)$ has truth values $F$.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

How many 5 digit telephone numbers can be constructed class 11 maths CBSE

Draw a well labelled diagram of reflex arc and explain class 11 biology CBSE

What is the difference between noise and music Can class 11 physics CBSE

Trending doubts
In what year Guru Nanak Dev ji was born A15 April 1469 class 11 social science CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

What is the z value for a 90 95 and 99 percent confidence class 11 maths CBSE

Draw a diagram showing the external features of fish class 11 biology CBSE

