
The truth values of $p,q{\text{ and }}r$ for which $\left( {p \wedge q} \right) \vee \left( { \sim r} \right)$ has truth values $F$ are respectively
A.$F,T,F$
B.$F,F,F$
C.$T,T,T$
D.$T,F,F$
E.$F,F,T$
Answer
603.9k+ views
Hint- This question is solved by making truth table of $p,{\text{ }}q,{\text{ }}r,{\text{ }} \sim r,{\text{ }}\left( {p \wedge q} \right){\text{ and }}\left( {p \wedge q} \right) \vee \left( { \sim r} \right)$.
Now given that,
$\left( {p \wedge q} \right) \vee \left( { \sim r} \right)$ has truth values $F$
Now we have to find the truth values of $p,q{\text{ and }}r$
We will find that by using truth table,
Now the possible combinations are ${2^3} = 8$ (Because variables are three.)
Also we know that,
$
\sim {\text{ means }}NOT \\
\wedge {\text{ means }}AND \\
\vee {\text{ means }}OR \\
$
$
p{\text{ }}q{\text{ }}r{\text{ }} \sim r{\text{ }}\left( {p \wedge q} \right){\text{ }}\left( {p \wedge q} \right) \vee \left( { \sim r} \right) \\
T{\text{ }}T{\text{ }}T{\text{ }}F{\text{ }}T{\text{ }}T \\
F{\text{ }}T{\text{ }}T{\text{ }}F{\text{ }}F{\text{ }}F \\
T{\text{ }}F{\text{ }}T{\text{ }}F{\text{ }}F{\text{ }}F \\
F{\text{ }}F{\text{ }}T{\text{ }}F{\text{ }}F{\text{ }}F \\
T{\text{ }}T{\text{ }}F{\text{ }}T{\text{ }}T{\text{ }}T \\
F{\text{ }}T{\text{ }}F{\text{ }}T{\text{ }}F{\text{ }}T \\
T{\text{ }}F{\text{ }}F{\text{ }}T{\text{ }}F{\text{ }}T \\
F{\text{ }}F{\text{ }}F{\text{ }}T{\text{ }}F{\text{ }}T \\
$
Now it is given that $\left( {p \wedge q} \right) \vee \left( { \sim r} \right)$ has truth values $F$ and we have to find the values of $p,q{\text{ and }}r$
when $\left( {p \wedge q} \right) \vee \left( { \sim r} \right)$ has truth values $F$.
Now, from the truth table, we will see the respective values of $p,q{\text{ and }}r$ for $\left( {p \wedge q} \right) \vee \left( { \sim r} \right)$ has truth values $F$.
Therefore, the values of $p,q{\text{ and }}r$ are $F,F,T$ respectively.
Thus, the correct option is (E).
Note- Whenever we face such types of questions the key concept is that we should solve it by using a truth table. In this question we find the values of $p,q{\text{ and }}r$ by making the truth table and then we see the respective values of $p,q{\text{ and }}r$ for $\left( {p \wedge q} \right) \vee \left( { \sim r} \right)$ has truth values $F$.
Now given that,
$\left( {p \wedge q} \right) \vee \left( { \sim r} \right)$ has truth values $F$
Now we have to find the truth values of $p,q{\text{ and }}r$
We will find that by using truth table,
Now the possible combinations are ${2^3} = 8$ (Because variables are three.)
Also we know that,
$
\sim {\text{ means }}NOT \\
\wedge {\text{ means }}AND \\
\vee {\text{ means }}OR \\
$
$
p{\text{ }}q{\text{ }}r{\text{ }} \sim r{\text{ }}\left( {p \wedge q} \right){\text{ }}\left( {p \wedge q} \right) \vee \left( { \sim r} \right) \\
T{\text{ }}T{\text{ }}T{\text{ }}F{\text{ }}T{\text{ }}T \\
F{\text{ }}T{\text{ }}T{\text{ }}F{\text{ }}F{\text{ }}F \\
T{\text{ }}F{\text{ }}T{\text{ }}F{\text{ }}F{\text{ }}F \\
F{\text{ }}F{\text{ }}T{\text{ }}F{\text{ }}F{\text{ }}F \\
T{\text{ }}T{\text{ }}F{\text{ }}T{\text{ }}T{\text{ }}T \\
F{\text{ }}T{\text{ }}F{\text{ }}T{\text{ }}F{\text{ }}T \\
T{\text{ }}F{\text{ }}F{\text{ }}T{\text{ }}F{\text{ }}T \\
F{\text{ }}F{\text{ }}F{\text{ }}T{\text{ }}F{\text{ }}T \\
$
Now it is given that $\left( {p \wedge q} \right) \vee \left( { \sim r} \right)$ has truth values $F$ and we have to find the values of $p,q{\text{ and }}r$
when $\left( {p \wedge q} \right) \vee \left( { \sim r} \right)$ has truth values $F$.
Now, from the truth table, we will see the respective values of $p,q{\text{ and }}r$ for $\left( {p \wedge q} \right) \vee \left( { \sim r} \right)$ has truth values $F$.
Therefore, the values of $p,q{\text{ and }}r$ are $F,F,T$ respectively.
Thus, the correct option is (E).
Note- Whenever we face such types of questions the key concept is that we should solve it by using a truth table. In this question we find the values of $p,q{\text{ and }}r$ by making the truth table and then we see the respective values of $p,q{\text{ and }}r$ for $\left( {p \wedge q} \right) \vee \left( { \sim r} \right)$ has truth values $F$.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Full form of MODEM?

What is a numerical label assigned to each device in a network?

Which software tool enables user interaction with the computer?

What is the file extension for MS Word file?

Full form of JPEG?

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which type of resource is iron ore A Renewable B Biotic class 11 social science CBSE

10 examples of friction in our daily life

Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

