
The truth values of $p,q{\text{ and }}r$ for which $\left( {p \wedge q} \right) \vee \left( { \sim r} \right)$ has truth values $F$ are respectively
A.$F,T,F$
B.$F,F,F$
C.$T,T,T$
D.$T,F,F$
E.$F,F,T$
Answer
622.2k+ views
Hint- This question is solved by making truth table of $p,{\text{ }}q,{\text{ }}r,{\text{ }} \sim r,{\text{ }}\left( {p \wedge q} \right){\text{ and }}\left( {p \wedge q} \right) \vee \left( { \sim r} \right)$.
Now given that,
$\left( {p \wedge q} \right) \vee \left( { \sim r} \right)$ has truth values $F$
Now we have to find the truth values of $p,q{\text{ and }}r$
We will find that by using truth table,
Now the possible combinations are ${2^3} = 8$ (Because variables are three.)
Also we know that,
$
\sim {\text{ means }}NOT \\
\wedge {\text{ means }}AND \\
\vee {\text{ means }}OR \\
$
$
p{\text{ }}q{\text{ }}r{\text{ }} \sim r{\text{ }}\left( {p \wedge q} \right){\text{ }}\left( {p \wedge q} \right) \vee \left( { \sim r} \right) \\
T{\text{ }}T{\text{ }}T{\text{ }}F{\text{ }}T{\text{ }}T \\
F{\text{ }}T{\text{ }}T{\text{ }}F{\text{ }}F{\text{ }}F \\
T{\text{ }}F{\text{ }}T{\text{ }}F{\text{ }}F{\text{ }}F \\
F{\text{ }}F{\text{ }}T{\text{ }}F{\text{ }}F{\text{ }}F \\
T{\text{ }}T{\text{ }}F{\text{ }}T{\text{ }}T{\text{ }}T \\
F{\text{ }}T{\text{ }}F{\text{ }}T{\text{ }}F{\text{ }}T \\
T{\text{ }}F{\text{ }}F{\text{ }}T{\text{ }}F{\text{ }}T \\
F{\text{ }}F{\text{ }}F{\text{ }}T{\text{ }}F{\text{ }}T \\
$
Now it is given that $\left( {p \wedge q} \right) \vee \left( { \sim r} \right)$ has truth values $F$ and we have to find the values of $p,q{\text{ and }}r$
when $\left( {p \wedge q} \right) \vee \left( { \sim r} \right)$ has truth values $F$.
Now, from the truth table, we will see the respective values of $p,q{\text{ and }}r$ for $\left( {p \wedge q} \right) \vee \left( { \sim r} \right)$ has truth values $F$.
Therefore, the values of $p,q{\text{ and }}r$ are $F,F,T$ respectively.
Thus, the correct option is (E).
Note- Whenever we face such types of questions the key concept is that we should solve it by using a truth table. In this question we find the values of $p,q{\text{ and }}r$ by making the truth table and then we see the respective values of $p,q{\text{ and }}r$ for $\left( {p \wedge q} \right) \vee \left( { \sim r} \right)$ has truth values $F$.
Now given that,
$\left( {p \wedge q} \right) \vee \left( { \sim r} \right)$ has truth values $F$
Now we have to find the truth values of $p,q{\text{ and }}r$
We will find that by using truth table,
Now the possible combinations are ${2^3} = 8$ (Because variables are three.)
Also we know that,
$
\sim {\text{ means }}NOT \\
\wedge {\text{ means }}AND \\
\vee {\text{ means }}OR \\
$
$
p{\text{ }}q{\text{ }}r{\text{ }} \sim r{\text{ }}\left( {p \wedge q} \right){\text{ }}\left( {p \wedge q} \right) \vee \left( { \sim r} \right) \\
T{\text{ }}T{\text{ }}T{\text{ }}F{\text{ }}T{\text{ }}T \\
F{\text{ }}T{\text{ }}T{\text{ }}F{\text{ }}F{\text{ }}F \\
T{\text{ }}F{\text{ }}T{\text{ }}F{\text{ }}F{\text{ }}F \\
F{\text{ }}F{\text{ }}T{\text{ }}F{\text{ }}F{\text{ }}F \\
T{\text{ }}T{\text{ }}F{\text{ }}T{\text{ }}T{\text{ }}T \\
F{\text{ }}T{\text{ }}F{\text{ }}T{\text{ }}F{\text{ }}T \\
T{\text{ }}F{\text{ }}F{\text{ }}T{\text{ }}F{\text{ }}T \\
F{\text{ }}F{\text{ }}F{\text{ }}T{\text{ }}F{\text{ }}T \\
$
Now it is given that $\left( {p \wedge q} \right) \vee \left( { \sim r} \right)$ has truth values $F$ and we have to find the values of $p,q{\text{ and }}r$
when $\left( {p \wedge q} \right) \vee \left( { \sim r} \right)$ has truth values $F$.
Now, from the truth table, we will see the respective values of $p,q{\text{ and }}r$ for $\left( {p \wedge q} \right) \vee \left( { \sim r} \right)$ has truth values $F$.
Therefore, the values of $p,q{\text{ and }}r$ are $F,F,T$ respectively.
Thus, the correct option is (E).
Note- Whenever we face such types of questions the key concept is that we should solve it by using a truth table. In this question we find the values of $p,q{\text{ and }}r$ by making the truth table and then we see the respective values of $p,q{\text{ and }}r$ for $\left( {p \wedge q} \right) \vee \left( { \sim r} \right)$ has truth values $F$.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

