
The total number of irrational term in the binomial expansion of ${{\left( {{7}^{\dfrac{1}{5}}}-{{3}^{\dfrac{1}{10}}} \right)}^{60}}$ is
\[\begin{align}
& \text{A}.\text{ 55} \\
& \text{B}.\text{ 49} \\
& \text{C}.\text{ 48} \\
& \text{D}.\text{ 54} \\
\end{align}\]
Answer
512.4k+ views
Hint: To solve this question, we will first of all calculate the total number of terms in binomial expansion of ${{\left( {{7}^{\dfrac{1}{5}}}-{{3}^{\dfrac{1}{10}}} \right)}^{60}}$ using the formula.
When, ${{\left( a+b \right)}^{n}}$ is expanded then the number of terms is (n + 1). Then, we will calculate the general terms by using formula \[{{T}_{r+1}}={}^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}\] where our expansion is ${{\left( a+b \right)}^{n}}$
Finally, we will form cases for the total number of rational terms then subtract it to the total number of terms to get a result.
Complete step-by-step answer:
We are given the expression as ${{\left( {{7}^{\dfrac{1}{5}}}-{{3}^{\dfrac{1}{10}}} \right)}^{60}}$ for a term given as ${{\left( a+b \right)}^{n}}$ where the general term is given by ${{T}_{r+1}}$ the total number of terms is (n + 1) where n is the power of (a + b).
Also, the general term of binomial expansion of ${{\left( a+b \right)}^{n}}$ is written as
\[{{T}_{r+1}}={}^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}\]
Using this formula of general term of a binomial expansion and the total number of terms as stated above, we get:
The total number of expansion of \[{{\left( {{7}^{\dfrac{1}{5}}}-{{3}^{\dfrac{1}{10}}} \right)}^{60}}\] is \[60+1=61\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (i)}\]
And the general term in binomial expansion of \[{{\left( {{7}^{\dfrac{1}{5}}}-{{3}^{\dfrac{1}{10}}} \right)}^{60}}\] is given as:
\[{{T}_{r+1}}={}^{60}{{C}_{r}}{{7}^{\dfrac{60-r}{5}}}{{\left( -3 \right)}^{\dfrac{r}{10}}}\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (ii)}\]
This is obtained by using $a={{7}^{\dfrac{1}{5}}}\text{ and b=}{{\left( -3 \right)}^{\dfrac{1}{10}}}$ in the above given formula.
Now, to calculate the total number of irrational numbers or terms we will first calculate the total number of rational terms.
Let us first define a rational number:
A number is called rational if it can be written in the form of $\dfrac{p}{q}$ where $q\ne 0$
Observing the term of equation (ii) we observe that ${}^{60}{{C}_{r}}$ is always rational for any r. The point of issue is ${{7}^{\dfrac{60-r}{5}}}\text{ and }{{\left( -3 \right)}^{\dfrac{r}{10}}}$
Consider power of 7 and -3 as $\dfrac{60-r}{5}\text{ and }\dfrac{r}{10}$ respectively then, we will consider cases for possible values of r.
Case I: r = 0, then \[\dfrac{60-r}{5}=\dfrac{60-0}{5}=\dfrac{60}{5}=12\] then ${{7}^{12}}$ is rational.
When r = 0 then $\dfrac{r}{10}=0\text{ and }{{\left( -3 \right)}^{0}}$ is rational.
And the product of two rationals is rational. So (ii) is rational.
Case II: r = 10, then \[\dfrac{60-r}{5}=\dfrac{60-10}{5}=\dfrac{50}{5}=10\] then ${{7}^{10}}$ is rational.
Also when r = 10 then \[\dfrac{r}{10}=\dfrac{10}{10}=1\] and ${{\left( -3 \right)}^{1}}$ is rational.
Again, the product of rational is rational. So the term (ii) is rational.
Case III: r = 20, then \[\dfrac{60-r}{5}=\dfrac{60-20}{5}=\dfrac{40}{5}=8\] then ${{7}^{8}}$ is rational.
Also when r = 20 then \[\dfrac{r}{10}=\dfrac{20}{10}=2\] and ${{\left( -3 \right)}^{2}}$ is rational.
And the product of rational is rational. So, terms in equation (ii) are rational.
Case IV: r = 30, then \[\dfrac{60-r}{5}=\dfrac{60-30}{5}=\dfrac{30}{5}=6\] then ${{7}^{6}}$ is rational.
Also when r = 30 then \[\dfrac{r}{10}=\dfrac{30}{10}=3\] and ${{\left( -3 \right)}^{3}}$ is rational.
Again, the product of two or more rationals is rational. So, the term in equation (ii) is rational.
Case V: r = 40 then \[\dfrac{60-r}{5}=\dfrac{60-40}{5}=\dfrac{20}{5}=4\] then ${{7}^{4}}$ is rational.
Also when r = 40 then \[\dfrac{r}{10}=\dfrac{40}{10}=4\] and ${{\left( -3 \right)}^{4}}$ is rational.
Again, the product of rational is rational. So, equation (ii) is rational.
Case VI: r = 50 then \[\dfrac{60-r}{5}=\dfrac{60-50}{5}=\dfrac{10}{5}=2\] then ${{7}^{2}}$ is rational.
Also when r = 50 then \[\dfrac{r}{10}=\dfrac{50}{10}=5\] and ${{\left( -3 \right)}^{5}}$ is rational.
Again, the product of rational is rational. So, equation (ii) term is rational.
Case VII: r = 60 then \[\dfrac{60-r}{5}=\dfrac{60-60}{5}=\dfrac{0}{5}=0\] then ${{7}^{0}}=1$ is rational
When r = 60 then \[\dfrac{r}{10}=\dfrac{60}{10}=6\] and ${{\left( -3 \right)}^{6}}$ is rational.
Again, the product of rational is rational. So, equation (ii) is rational.
Here, from all above cases when r = 0, 10, 20, 30, 40, 50, 60 then
\[{{T}_{r+1}}={}^{60}{{C}_{r}}{{7}^{\dfrac{60-r}{5}}}{{\left( -3 \right)}^{\dfrac{r}{10}}}\text{ is rational}\text{.}\]
So, we have number of irrational term is = total number of terms of binomial expansion of \[{{\left( {{7}^{\dfrac{1}{5}}}-{{3}^{\dfrac{1}{10}}} \right)}^{60}}\]
Subject to the number of rational terms we have 7 rational terms as we had 7 cases. Also, number of terms = 61 by equation (i)
Then, \[\text{Number of irrational terms }=\text{ 61}-\text{7 }=\text{ 54}\]
Therefore, we have the total number of irrational terms in binomial expansion of ${{\left( {{7}^{\dfrac{1}{5}}}-{{3}^{\dfrac{1}{10}}} \right)}^{60}}$ is 54
So, the correct answer is “Option D”.
Note: Another way to solve this question can be directly calculating the total number of rational terms in binomial expansion of ${{\left( {{7}^{\dfrac{1}{5}}}-{{3}^{\dfrac{1}{10}}} \right)}^{60}}$ by using the fact that, any value of r which is divisible by both 5 and 10 gives rational term in expansion of ${{\left( {{7}^{\dfrac{1}{5}}}-{{3}^{\dfrac{1}{10}}} \right)}^{60}}$
This is so because we had general term as:
\[{{T}_{r+1}}={}^{60}{{C}_{r}}{{7}^{\dfrac{60-r}{5}}}{{\left( -3 \right)}^{\dfrac{r}{10}}}\]
Where powers of 7 and -3 has $\dfrac{60-r}{5}\text{ and }\dfrac{r}{10}$ and we want to make this $\dfrac{60-r}{5}\text{ and }\dfrac{r}{10}$ as an integer. So, any value of r which is divisible by both 5 and 10 then, any term divisible by 10 works as any number divisible by 10 is divisible by 5. So, possibilities of r = 0, 10, 20, 30, 40, 50, 60 for the general term to be rational.
When, ${{\left( a+b \right)}^{n}}$ is expanded then the number of terms is (n + 1). Then, we will calculate the general terms by using formula \[{{T}_{r+1}}={}^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}\] where our expansion is ${{\left( a+b \right)}^{n}}$
Finally, we will form cases for the total number of rational terms then subtract it to the total number of terms to get a result.
Complete step-by-step answer:
We are given the expression as ${{\left( {{7}^{\dfrac{1}{5}}}-{{3}^{\dfrac{1}{10}}} \right)}^{60}}$ for a term given as ${{\left( a+b \right)}^{n}}$ where the general term is given by ${{T}_{r+1}}$ the total number of terms is (n + 1) where n is the power of (a + b).
Also, the general term of binomial expansion of ${{\left( a+b \right)}^{n}}$ is written as
\[{{T}_{r+1}}={}^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}\]
Using this formula of general term of a binomial expansion and the total number of terms as stated above, we get:
The total number of expansion of \[{{\left( {{7}^{\dfrac{1}{5}}}-{{3}^{\dfrac{1}{10}}} \right)}^{60}}\] is \[60+1=61\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (i)}\]
And the general term in binomial expansion of \[{{\left( {{7}^{\dfrac{1}{5}}}-{{3}^{\dfrac{1}{10}}} \right)}^{60}}\] is given as:
\[{{T}_{r+1}}={}^{60}{{C}_{r}}{{7}^{\dfrac{60-r}{5}}}{{\left( -3 \right)}^{\dfrac{r}{10}}}\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (ii)}\]
This is obtained by using $a={{7}^{\dfrac{1}{5}}}\text{ and b=}{{\left( -3 \right)}^{\dfrac{1}{10}}}$ in the above given formula.
Now, to calculate the total number of irrational numbers or terms we will first calculate the total number of rational terms.
Let us first define a rational number:
A number is called rational if it can be written in the form of $\dfrac{p}{q}$ where $q\ne 0$
Observing the term of equation (ii) we observe that ${}^{60}{{C}_{r}}$ is always rational for any r. The point of issue is ${{7}^{\dfrac{60-r}{5}}}\text{ and }{{\left( -3 \right)}^{\dfrac{r}{10}}}$
Consider power of 7 and -3 as $\dfrac{60-r}{5}\text{ and }\dfrac{r}{10}$ respectively then, we will consider cases for possible values of r.
Case I: r = 0, then \[\dfrac{60-r}{5}=\dfrac{60-0}{5}=\dfrac{60}{5}=12\] then ${{7}^{12}}$ is rational.
When r = 0 then $\dfrac{r}{10}=0\text{ and }{{\left( -3 \right)}^{0}}$ is rational.
And the product of two rationals is rational. So (ii) is rational.
Case II: r = 10, then \[\dfrac{60-r}{5}=\dfrac{60-10}{5}=\dfrac{50}{5}=10\] then ${{7}^{10}}$ is rational.
Also when r = 10 then \[\dfrac{r}{10}=\dfrac{10}{10}=1\] and ${{\left( -3 \right)}^{1}}$ is rational.
Again, the product of rational is rational. So the term (ii) is rational.
Case III: r = 20, then \[\dfrac{60-r}{5}=\dfrac{60-20}{5}=\dfrac{40}{5}=8\] then ${{7}^{8}}$ is rational.
Also when r = 20 then \[\dfrac{r}{10}=\dfrac{20}{10}=2\] and ${{\left( -3 \right)}^{2}}$ is rational.
And the product of rational is rational. So, terms in equation (ii) are rational.
Case IV: r = 30, then \[\dfrac{60-r}{5}=\dfrac{60-30}{5}=\dfrac{30}{5}=6\] then ${{7}^{6}}$ is rational.
Also when r = 30 then \[\dfrac{r}{10}=\dfrac{30}{10}=3\] and ${{\left( -3 \right)}^{3}}$ is rational.
Again, the product of two or more rationals is rational. So, the term in equation (ii) is rational.
Case V: r = 40 then \[\dfrac{60-r}{5}=\dfrac{60-40}{5}=\dfrac{20}{5}=4\] then ${{7}^{4}}$ is rational.
Also when r = 40 then \[\dfrac{r}{10}=\dfrac{40}{10}=4\] and ${{\left( -3 \right)}^{4}}$ is rational.
Again, the product of rational is rational. So, equation (ii) is rational.
Case VI: r = 50 then \[\dfrac{60-r}{5}=\dfrac{60-50}{5}=\dfrac{10}{5}=2\] then ${{7}^{2}}$ is rational.
Also when r = 50 then \[\dfrac{r}{10}=\dfrac{50}{10}=5\] and ${{\left( -3 \right)}^{5}}$ is rational.
Again, the product of rational is rational. So, equation (ii) term is rational.
Case VII: r = 60 then \[\dfrac{60-r}{5}=\dfrac{60-60}{5}=\dfrac{0}{5}=0\] then ${{7}^{0}}=1$ is rational
When r = 60 then \[\dfrac{r}{10}=\dfrac{60}{10}=6\] and ${{\left( -3 \right)}^{6}}$ is rational.
Again, the product of rational is rational. So, equation (ii) is rational.
Here, from all above cases when r = 0, 10, 20, 30, 40, 50, 60 then
\[{{T}_{r+1}}={}^{60}{{C}_{r}}{{7}^{\dfrac{60-r}{5}}}{{\left( -3 \right)}^{\dfrac{r}{10}}}\text{ is rational}\text{.}\]
So, we have number of irrational term is = total number of terms of binomial expansion of \[{{\left( {{7}^{\dfrac{1}{5}}}-{{3}^{\dfrac{1}{10}}} \right)}^{60}}\]
Subject to the number of rational terms we have 7 rational terms as we had 7 cases. Also, number of terms = 61 by equation (i)
Then, \[\text{Number of irrational terms }=\text{ 61}-\text{7 }=\text{ 54}\]
Therefore, we have the total number of irrational terms in binomial expansion of ${{\left( {{7}^{\dfrac{1}{5}}}-{{3}^{\dfrac{1}{10}}} \right)}^{60}}$ is 54
So, the correct answer is “Option D”.
Note: Another way to solve this question can be directly calculating the total number of rational terms in binomial expansion of ${{\left( {{7}^{\dfrac{1}{5}}}-{{3}^{\dfrac{1}{10}}} \right)}^{60}}$ by using the fact that, any value of r which is divisible by both 5 and 10 gives rational term in expansion of ${{\left( {{7}^{\dfrac{1}{5}}}-{{3}^{\dfrac{1}{10}}} \right)}^{60}}$
This is so because we had general term as:
\[{{T}_{r+1}}={}^{60}{{C}_{r}}{{7}^{\dfrac{60-r}{5}}}{{\left( -3 \right)}^{\dfrac{r}{10}}}\]
Where powers of 7 and -3 has $\dfrac{60-r}{5}\text{ and }\dfrac{r}{10}$ and we want to make this $\dfrac{60-r}{5}\text{ and }\dfrac{r}{10}$ as an integer. So, any value of r which is divisible by both 5 and 10 then, any term divisible by 10 works as any number divisible by 10 is divisible by 5. So, possibilities of r = 0, 10, 20, 30, 40, 50, 60 for the general term to be rational.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Which one of the following is a true fish A Jellyfish class 12 biology CBSE

Which are the Top 10 Largest Countries of the World?

Why is insulin not administered orally to a diabetic class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

The total number of isomers considering both the structural class 12 chemistry CBSE
