The third term of an AP is 7 and its ${{\text{7}}^{{\text{th}}}}$ term is 2 more than thrice of its ${{\text{3}}^{{\text{rd}}}}$ term. Find the first term, common difference and the sum of its first 20 terms.
Answer
384.6k+ views
Hint- Here, we will be using the formulas of an AP series.
Given, third term of AP, \[{a_3} = 7\]
Also, \[{a_7} = 3{a_3} + 2\] where \[{a_3}\] is the third term of AP and \[{a_7}\] is the seventh term of AP
Since, in an AP series, the common difference \[d\] remains the same.
Since, \[{n^{th}}\] term of AP is given by \[{a_n} = {a_1} + \left( {n - 1} \right)d\] where \[{a_1}\] is the first term of AP series and \[d\] is the common difference of AP.
\[
\Rightarrow {a_3} = 7 \Rightarrow {a_1} + \left( {3 - 1} \right)d = 7 \Rightarrow {a_1} + 2d = 7{\text{ }} \to {\text{(1)}} \\
\Rightarrow {a_7} = 3{a_3} + 2 \Rightarrow {a_1} + \left( {7 - 1} \right)d = 3\left[ {{a_1} + \left( {3 - 1} \right)d} \right] + 2 \Rightarrow {a_1} + 6d = 3\left[ {{a_1} + 2d} \right] + 2 \\
\Rightarrow {a_1} + 6d = 3{a_1} + 6d + 2 \Rightarrow {a_1} = 3{a_1} + 2 \Rightarrow 2{a_1} = - 2 \Rightarrow {a_1} = - 1 \\
\]
Put this value of \[{a_1}\] in equation (1), we get
\[ - 1 + 2d = 7 \Rightarrow 2d = 8 \Rightarrow d = \frac{8}{2} = 4\]
As we know that sum of first \[n\] terms in AP is given by \[{{\text{S}}_n} = \frac{n}{2}\left[ {2{a_1} + \left( {n - 1} \right)d} \right]\]
Let’s substitute the values of \[{a_1}\] and \[d\], we get
Now, sum of its first 20 terms \[{{\text{S}}_{20}} = \frac{{20}}{2}\left[ {2 \times \left( { - 1} \right) + 4\left( {20 - 1} \right)} \right] = 10\left( { - 2 + 76} \right) = 740\].
Therefore, the first term of the given AP series with common difference 4 is \[ - 1\] and the sum of its first 20 terms is 740.
Note- In these types of problems, find the common parameters which includes the first term, common difference and the total number of terms in the AP series using the given data and then find whatever is asked in the problem.
Given, third term of AP, \[{a_3} = 7\]
Also, \[{a_7} = 3{a_3} + 2\] where \[{a_3}\] is the third term of AP and \[{a_7}\] is the seventh term of AP
Since, in an AP series, the common difference \[d\] remains the same.
Since, \[{n^{th}}\] term of AP is given by \[{a_n} = {a_1} + \left( {n - 1} \right)d\] where \[{a_1}\] is the first term of AP series and \[d\] is the common difference of AP.
\[
\Rightarrow {a_3} = 7 \Rightarrow {a_1} + \left( {3 - 1} \right)d = 7 \Rightarrow {a_1} + 2d = 7{\text{ }} \to {\text{(1)}} \\
\Rightarrow {a_7} = 3{a_3} + 2 \Rightarrow {a_1} + \left( {7 - 1} \right)d = 3\left[ {{a_1} + \left( {3 - 1} \right)d} \right] + 2 \Rightarrow {a_1} + 6d = 3\left[ {{a_1} + 2d} \right] + 2 \\
\Rightarrow {a_1} + 6d = 3{a_1} + 6d + 2 \Rightarrow {a_1} = 3{a_1} + 2 \Rightarrow 2{a_1} = - 2 \Rightarrow {a_1} = - 1 \\
\]
Put this value of \[{a_1}\] in equation (1), we get
\[ - 1 + 2d = 7 \Rightarrow 2d = 8 \Rightarrow d = \frac{8}{2} = 4\]
As we know that sum of first \[n\] terms in AP is given by \[{{\text{S}}_n} = \frac{n}{2}\left[ {2{a_1} + \left( {n - 1} \right)d} \right]\]
Let’s substitute the values of \[{a_1}\] and \[d\], we get
Now, sum of its first 20 terms \[{{\text{S}}_{20}} = \frac{{20}}{2}\left[ {2 \times \left( { - 1} \right) + 4\left( {20 - 1} \right)} \right] = 10\left( { - 2 + 76} \right) = 740\].
Therefore, the first term of the given AP series with common difference 4 is \[ - 1\] and the sum of its first 20 terms is 740.
Note- In these types of problems, find the common parameters which includes the first term, common difference and the total number of terms in the AP series using the given data and then find whatever is asked in the problem.
Recently Updated Pages
Which of the following would not be a valid reason class 11 biology CBSE

What is meant by monosporic development of female class 11 biology CBSE

Draw labelled diagram of the following i Gram seed class 11 biology CBSE

Explain with the suitable examples the different types class 11 biology CBSE

How is pinnately compound leaf different from palmately class 11 biology CBSE

Match the following Column I Column I A Chlamydomonas class 11 biology CBSE

Trending doubts
What is 1 divided by 0 class 8 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

What is pollution? How many types of pollution? Define it

Change the following sentences into negative and interrogative class 10 english CBSE

Why do noble gases have positive electron gain enthalpy class 11 chemistry CBSE

How fast is 60 miles per hour in kilometres per ho class 10 maths CBSE

Write an application to the principal requesting five class 10 english CBSE

Give 10 examples for herbs , shrubs , climbers , creepers
