
The tangent at a point $P$ on the hyperbola $\dfrac{{{x^2}}}{{{a^2}}} - \dfrac{{{y^2}}}{{{b^2}}} = 1$ meets one of the directrix in $F$. If $PF$ subtends an angle $\theta $ at the corresponding focus, then \[\theta \] equals:
A.$\dfrac{\pi }{4}$
B.$\dfrac{\pi }{2}$
C.$\dfrac{{3\pi }}{4}$
D.$\pi $
Answer
580.5k+ views
Hint: We will first draw the diagram corresponding to the given condition. We will then find the coordinates of the points mentioned in the question. Then we will find the slope of lines that subtends the required angle. Next, we calculate the product of the slopes to determine the angle.
Complete step-by-step answer:
We are given that the equation of hyperbola is $\dfrac{{{x^2}}}{{{a^2}}} - \dfrac{{{y^2}}}{{{b^2}}} = 1$
We have to find $\theta $
The normal form of any point on the hyperbola is of the form $\left( {a\sec \theta ,b\tan \theta } \right)$
$P$ is a point on hyperbola through which a tangent passes, then let $P$ be $\left( {a\sec \theta ,b\tan \theta } \right)$
We know that equation of tangent through a point $\left( {{x_1},{y_1}} \right)$ passing through a hyperbola is $\dfrac{{x{x_1}}}{{{a^2}}} - \dfrac{{y{y_1}}}{{{b^2}}} = 1$
Then, equation of tangent passing through point $P\left( {a\sec \theta ,b\tan \theta } \right)$ is
$\dfrac{{x\left( {a\sec \theta } \right)}}{{{a^2}}} - \dfrac{{y\left( {b\tan \theta } \right)}}{{{b^2}}} = 1$
$ \Rightarrow \dfrac{x}{a}\sec \theta - \dfrac{y}{b}\tan \theta = 1$ (1)
We are also given that the tangent passes through the directrix.
We know that equation of directrix is $x = \dfrac{a}{e}$
On substituting the value of $x = \dfrac{a}{e}$ in equation (1)
Hence,
$
\dfrac{{\dfrac{a}{e}}}{a}\sec \theta - \dfrac{y}{b}\tan \theta = 1 \\
\Rightarrow \dfrac{{\sec \theta }}{e} - \dfrac{y}{b}\tan \theta = 1 \\
$
We will now find the value of $y$ from the above equation
$
\dfrac{{\sec \theta }}{e} - 1 = \dfrac{y}{b}\tan \theta \\
\left( {\dfrac{{\sec \theta }}{e} - 1} \right)\dfrac{b}{{\tan \theta }} = y \\
$
Therefore, the coordinates of focus are $\left( {ae,0} \right)$, the coordinates of $P$ are $\left( {a\sec \theta ,b\tan \theta } \right)$ and coordinates of $F$ are $\left( {\dfrac{a}{e},\left( {\dfrac{{\sec \theta }}{e} - 1} \right)\dfrac{b}{{\tan \theta }}} \right)$
We will know find the slope of $PC$ and slope of $FC$, where slope is given by $\dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}$
Then, slope of $PC$ is
$
{m_1} = \dfrac{{b\tan \theta }}{{a\sec \theta - ae}} \\
\Rightarrow {m_1} = \dfrac{{b\dfrac{{\sin \theta }}{{\cos \theta }}}}{{a\dfrac{1}{{\cos \theta }} - ae}} \\
\Rightarrow {m_1} = \dfrac{{b\sin \theta }}{{a - ae\cos \theta }} \\
$
The slope of $FC$ is
$
{m_2} = - \dfrac{{\left( {\dfrac{{\sec \theta }}{e} - 1} \right)\dfrac{b}{{\tan \theta }}}}{{\dfrac{a}{e} - ae}} \\
\Rightarrow {m_2} = - \dfrac{{\dfrac{b}{e}\dfrac{{\dfrac{1}{{\cos \theta }}}}{{\dfrac{{\sin \theta }}{{\cos \theta }}}} - \dfrac{{b\cos \theta }}{{\sin \theta }}}}{{\dfrac{{a - a{e^2}}}{e}}} \\
\Rightarrow {m_2} = - \dfrac{{\dfrac{b}{{e\sin \theta }} - \dfrac{{b\cos \theta }}{{\sin \theta }}}}{{\dfrac{{a - a{e^2}}}{e}}} \\
\Rightarrow {m_2} = - \dfrac{{b - be\cos \theta }}{{\left( {a - a{e^2}} \right)\sin \theta }} \\
$
It is also known that ${b^2} = {a^2}\left( {1 - {e^2}} \right)$
Then,
$
{m_2} = - \dfrac{{b\left( {1 - e\cos \theta } \right)}}{{a\dfrac{{{b^2}}}{{{a^2}}}\sin \theta }} \\
\Rightarrow {m_2} = - \dfrac{{a\left( {1 - e\cos \theta } \right)}}{{b\sin \theta }} \\
$
Now, we will calculate ${m_1}.{m_2}$
Hence, \[\dfrac{{b\sin \theta }}{{a - ae\cos \theta }}\left( { - \dfrac{{a\left( {1 - e\cos \theta } \right)}}{{b\sin \theta }}} \right) = - 1\]
Since, ${m_1}{m_2} = - 1$, this implies $\theta = \dfrac{\pi }{2}$
Hence, option B is correct.
Note: Hyperbola is a conic section whose general equation is $\dfrac{{{x^2}}}{{{a^2}}} - \dfrac{{{y^2}}}{{{b^2}}} = 1$. Use the formulas of trigonometry correctly. If the product of slopes of two lines is $ - 1$, then lines are perpendicular to each other. That is, the angle between them is ${90^ \circ }$
Complete step-by-step answer:
We are given that the equation of hyperbola is $\dfrac{{{x^2}}}{{{a^2}}} - \dfrac{{{y^2}}}{{{b^2}}} = 1$
We have to find $\theta $
The normal form of any point on the hyperbola is of the form $\left( {a\sec \theta ,b\tan \theta } \right)$
$P$ is a point on hyperbola through which a tangent passes, then let $P$ be $\left( {a\sec \theta ,b\tan \theta } \right)$
We know that equation of tangent through a point $\left( {{x_1},{y_1}} \right)$ passing through a hyperbola is $\dfrac{{x{x_1}}}{{{a^2}}} - \dfrac{{y{y_1}}}{{{b^2}}} = 1$
Then, equation of tangent passing through point $P\left( {a\sec \theta ,b\tan \theta } \right)$ is
$\dfrac{{x\left( {a\sec \theta } \right)}}{{{a^2}}} - \dfrac{{y\left( {b\tan \theta } \right)}}{{{b^2}}} = 1$
$ \Rightarrow \dfrac{x}{a}\sec \theta - \dfrac{y}{b}\tan \theta = 1$ (1)
We are also given that the tangent passes through the directrix.
We know that equation of directrix is $x = \dfrac{a}{e}$
On substituting the value of $x = \dfrac{a}{e}$ in equation (1)
Hence,
$
\dfrac{{\dfrac{a}{e}}}{a}\sec \theta - \dfrac{y}{b}\tan \theta = 1 \\
\Rightarrow \dfrac{{\sec \theta }}{e} - \dfrac{y}{b}\tan \theta = 1 \\
$
We will now find the value of $y$ from the above equation
$
\dfrac{{\sec \theta }}{e} - 1 = \dfrac{y}{b}\tan \theta \\
\left( {\dfrac{{\sec \theta }}{e} - 1} \right)\dfrac{b}{{\tan \theta }} = y \\
$
Therefore, the coordinates of focus are $\left( {ae,0} \right)$, the coordinates of $P$ are $\left( {a\sec \theta ,b\tan \theta } \right)$ and coordinates of $F$ are $\left( {\dfrac{a}{e},\left( {\dfrac{{\sec \theta }}{e} - 1} \right)\dfrac{b}{{\tan \theta }}} \right)$
We will know find the slope of $PC$ and slope of $FC$, where slope is given by $\dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}$
Then, slope of $PC$ is
$
{m_1} = \dfrac{{b\tan \theta }}{{a\sec \theta - ae}} \\
\Rightarrow {m_1} = \dfrac{{b\dfrac{{\sin \theta }}{{\cos \theta }}}}{{a\dfrac{1}{{\cos \theta }} - ae}} \\
\Rightarrow {m_1} = \dfrac{{b\sin \theta }}{{a - ae\cos \theta }} \\
$
The slope of $FC$ is
$
{m_2} = - \dfrac{{\left( {\dfrac{{\sec \theta }}{e} - 1} \right)\dfrac{b}{{\tan \theta }}}}{{\dfrac{a}{e} - ae}} \\
\Rightarrow {m_2} = - \dfrac{{\dfrac{b}{e}\dfrac{{\dfrac{1}{{\cos \theta }}}}{{\dfrac{{\sin \theta }}{{\cos \theta }}}} - \dfrac{{b\cos \theta }}{{\sin \theta }}}}{{\dfrac{{a - a{e^2}}}{e}}} \\
\Rightarrow {m_2} = - \dfrac{{\dfrac{b}{{e\sin \theta }} - \dfrac{{b\cos \theta }}{{\sin \theta }}}}{{\dfrac{{a - a{e^2}}}{e}}} \\
\Rightarrow {m_2} = - \dfrac{{b - be\cos \theta }}{{\left( {a - a{e^2}} \right)\sin \theta }} \\
$
It is also known that ${b^2} = {a^2}\left( {1 - {e^2}} \right)$
Then,
$
{m_2} = - \dfrac{{b\left( {1 - e\cos \theta } \right)}}{{a\dfrac{{{b^2}}}{{{a^2}}}\sin \theta }} \\
\Rightarrow {m_2} = - \dfrac{{a\left( {1 - e\cos \theta } \right)}}{{b\sin \theta }} \\
$
Now, we will calculate ${m_1}.{m_2}$
Hence, \[\dfrac{{b\sin \theta }}{{a - ae\cos \theta }}\left( { - \dfrac{{a\left( {1 - e\cos \theta } \right)}}{{b\sin \theta }}} \right) = - 1\]
Since, ${m_1}{m_2} = - 1$, this implies $\theta = \dfrac{\pi }{2}$
Hence, option B is correct.
Note: Hyperbola is a conic section whose general equation is $\dfrac{{{x^2}}}{{{a^2}}} - \dfrac{{{y^2}}}{{{b^2}}} = 1$. Use the formulas of trigonometry correctly. If the product of slopes of two lines is $ - 1$, then lines are perpendicular to each other. That is, the angle between them is ${90^ \circ }$
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

