
The system of equations ax + y + z = 0, x + by + z = 0, x + y + cz = 0 has a non-trivial solution then $\dfrac{1}{{1 - a}} + \dfrac{1}{{1 - b}} + \dfrac{1}{{1 - c}} = $
Answer
573.6k+ views
Hint: In this question this system of equations has a non-trivial solution then it means it has non-zero solutions. We will solve the given equations and find $\dfrac{1}{{1 - a}}, \dfrac{1}{{1 - b}}, \dfrac{1}{{1 - c}}$ in terms of x, y, z. Then finally add these three equations to get the result.
Complete step-by-step answer:
We have;
ax + y + z =0 $ \Rightarrow $ y + z = − ax
Adding x on both sides;
x + y + z = -ax + x $ \Rightarrow $ x + y + z = x (1 – a)
$ \Rightarrow \dfrac{1}{{1 - a}} = \dfrac{x}{{x + y + z}}$ …(i)
Again, x + by + z = 0 $ \Rightarrow $x + z = − by
Adding y on both sides;
x + y + z = -by + y $ \Rightarrow $x + y + z = y (1 – b)
$ \Rightarrow \dfrac{1}{{1 - b}} = \dfrac{y}{{x + y + z}}$ …(ii)
Again, we have;
x + y + cz = 0 $ \Rightarrow $x + y = − cz
Adding z on both sides
x + y + z = − cz + z $ \Rightarrow $x + y + z = z (1 – c)
$ \Rightarrow \dfrac{1}{{1 - c}} = \dfrac{z}{{x + y + z}}$ …(iii)
Adding equations (i), (ii), and (iii), we get;
$\dfrac{1}{{1 - a}} + \dfrac{1}{{1 - b}} + \dfrac{1}{{1 - c}} = \dfrac{x}{{x + y + z}} + \dfrac{y}{{x + y + z}} + \dfrac{z}{{x + y + z}}$
$ \Rightarrow \dfrac{1}{{1 - a}} + \dfrac{1}{{1 - b}} + \dfrac{1}{{1 - c}} = \dfrac{{x + y + z}}{{x + y + z}}$
$ \Rightarrow \dfrac{1}{{1 - a}} + \dfrac{1}{{1 - b}} + \dfrac{1}{{1 - c}} = 1$.
Hence, $\dfrac{1}{{1 - a}} + \dfrac{1}{{1 - b}} + \dfrac{1}{{1 - c}} = $1.
Note: The system of equations in which the determinant of the coefficient is zero is called a non-trivial solution. And the system of equations in which the determinant of the coefficient matrix is not zero but the solution x = y = z = 0 is called a trivial solution.
Alternatively, we can solve this question, using matrix rule. We have three equations and three variables, first write the system of equations in matrix format. And find the values following the steps.
Complete step-by-step answer:
We have;
ax + y + z =0 $ \Rightarrow $ y + z = − ax
Adding x on both sides;
x + y + z = -ax + x $ \Rightarrow $ x + y + z = x (1 – a)
$ \Rightarrow \dfrac{1}{{1 - a}} = \dfrac{x}{{x + y + z}}$ …(i)
Again, x + by + z = 0 $ \Rightarrow $x + z = − by
Adding y on both sides;
x + y + z = -by + y $ \Rightarrow $x + y + z = y (1 – b)
$ \Rightarrow \dfrac{1}{{1 - b}} = \dfrac{y}{{x + y + z}}$ …(ii)
Again, we have;
x + y + cz = 0 $ \Rightarrow $x + y = − cz
Adding z on both sides
x + y + z = − cz + z $ \Rightarrow $x + y + z = z (1 – c)
$ \Rightarrow \dfrac{1}{{1 - c}} = \dfrac{z}{{x + y + z}}$ …(iii)
Adding equations (i), (ii), and (iii), we get;
$\dfrac{1}{{1 - a}} + \dfrac{1}{{1 - b}} + \dfrac{1}{{1 - c}} = \dfrac{x}{{x + y + z}} + \dfrac{y}{{x + y + z}} + \dfrac{z}{{x + y + z}}$
$ \Rightarrow \dfrac{1}{{1 - a}} + \dfrac{1}{{1 - b}} + \dfrac{1}{{1 - c}} = \dfrac{{x + y + z}}{{x + y + z}}$
$ \Rightarrow \dfrac{1}{{1 - a}} + \dfrac{1}{{1 - b}} + \dfrac{1}{{1 - c}} = 1$.
Hence, $\dfrac{1}{{1 - a}} + \dfrac{1}{{1 - b}} + \dfrac{1}{{1 - c}} = $1.
Note: The system of equations in which the determinant of the coefficient is zero is called a non-trivial solution. And the system of equations in which the determinant of the coefficient matrix is not zero but the solution x = y = z = 0 is called a trivial solution.
Alternatively, we can solve this question, using matrix rule. We have three equations and three variables, first write the system of equations in matrix format. And find the values following the steps.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

