Question
Answers

The symbolic form of the statement: “I am topper and I worked hard”, if
p: I am topper.
q: I worked hard.
$
  {\text{A}}{\text{. p}} \leftrightarrow {\text{q}} \\
  {\text{B}}{\text{. p}} \vee {\text{q}} \\
  {\text{C}}{\text{. p}} \wedge {\text{q}} \\
  {\text{D}}{\text{. p}} \to {\text{q}} \\
$

Answer Verified Verified
Hint: Here, we will be proceeding by simply using all the four logic symbols mentioned in the options with the two statement variables p and q given in the problem to see which one of these symbolic forms gives the same statement as given in the problem.

Complete step-by-step answer:
The statement is “I am topper and I worked hard”. This statement needs to be represented in the symbolic form using two different statement variables p and q with the help of some logic symbol.

Given, p: I am topper and q: I worked hard.

If we see the options, four different logic symbols are used. Let us observe these one by one.
First logic symbol between p and q is $ \leftrightarrow $ which stands for equivalence. As we know that if there are two statement variables A and B then ${\text{A}} \leftrightarrow {\text{B}}$ means “A if and only if B” . This is the symbolic form.

So, symbolic form \[{\text{p}} \leftrightarrow {\text{q}}\] means “I am topper if and only if I worked hard” which is not the same as the given statement.
Second logic symbol between p and q is $ \vee $ which stands for disjunction. As we know that if there are two statement variables A and B then ${\text{A}} \vee {\text{B}}$ means “A or B” . This is the symbolic form.

So, symbolic form \[{\text{p}} \vee {\text{q}}\] means “I am topper or I worked hard” which is not the same as the given statement.
Third logic symbol between p and q is $ \wedge $ which stands for conjunction. As we know that if there are two statement variables A and B then ${\text{A}} \wedge {\text{B}}$ means “A and B” . This is the symbolic form.

So, the symbolic form \[{\text{p}} \wedge {\text{q}}\] means “I am topper and I worked hard” which is the same as the given statement.
Fourth logic symbol between p and q is $ \to $ which stands for implication. As we know that if there are two statement variables A and B then ${\text{A}} \to {\text{B}}$ means “If A then B” . This is the symbolic form.

So, the symbolic form \[{\text{p}} \to {\text{q}}\] means “If I am topper then I worked hard” which is not the same as the given statement.
Clearly, the symbolic form of the statement: “I am topper and I worked hard” is \[{\text{p}} \wedge {\text{q}}\] where two statement variables are p as “I am topper” and q as “I worked hard”.

Hence, option C is correct.

Note: In these types of problems, we represent all the given symbolic forms in the options into statements which will be formed with the help of statement variables p and q given in the problem. Here, there is no need for truth tables because we have to just understand the symbolic form of various logic symbols.
Bookmark added to your notes.
View Notes
×