Answer
Verified
492.9k+ views
Hint: Consider two numbers and give each number a variable, say a and b. For these two numbers, the geometric mean is given by $\sqrt{ab}$. In the question, we are given that the sum of the two numbers is 6 times the geometric mean of the two numbers. Use this to find the value of the ratio of these two numbers.
Complete step-by-step answer:
Before proceeding with the question, we must know the formula that will be required to solve this question. For any two numbers a and b, the geometric mean of these two numbers is given by,
$\sqrt{ab}$ . . . . . . . . . . . . (1)
In this question, it is given that the sum of the two numbers is 6 times their geometric mean and we are required to find the ratio of these two numbers.
Let us assume that these two numbers are a and b. From (1), the geometric mean of these two numbers is equal to $\sqrt{ab}$. Since it is given that the sum of the two numbers is 6 times their geometric mean, we can write,
$\begin{align}
& a+b=6\sqrt{ab} \\
& \Rightarrow \dfrac{a+b}{\sqrt{ab}}=6 \\
& \Rightarrow \dfrac{a}{\sqrt{ab}}+\dfrac{b}{\sqrt{ab}}=6 \\
& \Rightarrow \sqrt{\dfrac{a}{b}}+\sqrt{\dfrac{b}{a}}=6 \\
& \Rightarrow \sqrt{\dfrac{a}{b}}+\dfrac{1}{\sqrt{\dfrac{a}{b}}}=6 \\
\end{align}$
Let us substitute $\sqrt{\dfrac{a}{b}}=t$. So, we get,
$\begin{align}
& t+\dfrac{1}{t}=6 \\
& \Rightarrow \dfrac{{{t}^{2}}+1}{t}=6 \\
& \Rightarrow {{t}^{2}}+1=6t \\
& \Rightarrow {{t}^{2}}-6t+1=0 \\
\end{align}$
To solve this equation, we will use quadratic formula from which, the roots of the quadratic equation \[a{{x}^{2}}+bx+c=0\] are given by $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$. So, for the above equation, we can say,
$\begin{align}
& t=\dfrac{-\left( -6 \right)\pm \sqrt{{{\left( -6 \right)}^{2}}-4.1.1}}{2.1} \\
& \Rightarrow t=\dfrac{6\pm \sqrt{36-4}}{2} \\
& \Rightarrow t=\dfrac{6\pm \sqrt{32}}{2} \\
& \Rightarrow t=\dfrac{6\pm 4\sqrt{2}}{2} \\
& \Rightarrow t=3\pm 2\sqrt{2} \\
\end{align}$
Since $\sqrt{\dfrac{a}{b}}=t$, we can write,
\[\begin{align}
& \sqrt{\dfrac{a}{b}}=3\pm 2\sqrt{2} \\
& \Rightarrow \sqrt{\dfrac{a}{b}}=3+2\sqrt{2},\sqrt{\dfrac{a}{b}}=3-2\sqrt{2} \\
\end{align}\]
Let us consider \[\sqrt{\dfrac{a}{b}}=3+2\sqrt{2}\]. This can be also written as,
\[\begin{align}
& \sqrt{\dfrac{a}{b}}={{\left( \sqrt{2} \right)}^{2}}+{{1}^{2}}+2.1.\sqrt{2} \\
& \Rightarrow \sqrt{\dfrac{a}{b}}={{\left( \sqrt{2}+1 \right)}^{2}} \\
& \Rightarrow \sqrt{\dfrac{a}{b}}={{\left( \sqrt{2}+1 \right)}^{2}} \\
& \Rightarrow \sqrt{\dfrac{a}{b}}=\dfrac{{{\left( \sqrt{2}+1 \right)}^{2}}}{\left( \sqrt{2}-1 \right)\left( \sqrt{2}+1 \right)} \\
& \Rightarrow \sqrt{\dfrac{a}{b}}=\dfrac{\left( \sqrt{2}+1 \right)}{\left( \sqrt{2}-1 \right)} \\
\end{align}\]
Squaring both the sides, we get,
\[\begin{align}
& {{\left( \sqrt{\dfrac{a}{b}} \right)}^{2}}=\dfrac{{{\left( \sqrt{2}+1 \right)}^{2}}}{{{\left( \sqrt{2}-1 \right)}^{2}}} \\
& \Rightarrow \dfrac{a}{b}=\dfrac{{{\left( \sqrt{2} \right)}^{2}}+{{1}^{2}}+2.1.\sqrt{2}}{{{\left( \sqrt{2} \right)}^{2}}+{{1}^{2}}-2.1.\sqrt{2}} \\
& \Rightarrow \dfrac{a}{b}=\dfrac{2+1+2\sqrt{2}}{2+1-2\sqrt{2}} \\
& \Rightarrow \dfrac{a}{b}=\dfrac{3+2\sqrt{2}}{3-2\sqrt{2}} \\
\end{align}\]
Hence, we have proved that the ratio of the two numbers is \[\dfrac{3+2\sqrt{2}}{3-2\sqrt{2}}\].
Note: There is a possibility that one may write $t$ as our answer in a hurry to solve the question. But since $t=\sqrt{\dfrac{a}{b}}$ and we are required to find the $\dfrac{a}{b}$ in the question, we have to perform squaring and then answer the question.
Complete step-by-step answer:
Before proceeding with the question, we must know the formula that will be required to solve this question. For any two numbers a and b, the geometric mean of these two numbers is given by,
$\sqrt{ab}$ . . . . . . . . . . . . (1)
In this question, it is given that the sum of the two numbers is 6 times their geometric mean and we are required to find the ratio of these two numbers.
Let us assume that these two numbers are a and b. From (1), the geometric mean of these two numbers is equal to $\sqrt{ab}$. Since it is given that the sum of the two numbers is 6 times their geometric mean, we can write,
$\begin{align}
& a+b=6\sqrt{ab} \\
& \Rightarrow \dfrac{a+b}{\sqrt{ab}}=6 \\
& \Rightarrow \dfrac{a}{\sqrt{ab}}+\dfrac{b}{\sqrt{ab}}=6 \\
& \Rightarrow \sqrt{\dfrac{a}{b}}+\sqrt{\dfrac{b}{a}}=6 \\
& \Rightarrow \sqrt{\dfrac{a}{b}}+\dfrac{1}{\sqrt{\dfrac{a}{b}}}=6 \\
\end{align}$
Let us substitute $\sqrt{\dfrac{a}{b}}=t$. So, we get,
$\begin{align}
& t+\dfrac{1}{t}=6 \\
& \Rightarrow \dfrac{{{t}^{2}}+1}{t}=6 \\
& \Rightarrow {{t}^{2}}+1=6t \\
& \Rightarrow {{t}^{2}}-6t+1=0 \\
\end{align}$
To solve this equation, we will use quadratic formula from which, the roots of the quadratic equation \[a{{x}^{2}}+bx+c=0\] are given by $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$. So, for the above equation, we can say,
$\begin{align}
& t=\dfrac{-\left( -6 \right)\pm \sqrt{{{\left( -6 \right)}^{2}}-4.1.1}}{2.1} \\
& \Rightarrow t=\dfrac{6\pm \sqrt{36-4}}{2} \\
& \Rightarrow t=\dfrac{6\pm \sqrt{32}}{2} \\
& \Rightarrow t=\dfrac{6\pm 4\sqrt{2}}{2} \\
& \Rightarrow t=3\pm 2\sqrt{2} \\
\end{align}$
Since $\sqrt{\dfrac{a}{b}}=t$, we can write,
\[\begin{align}
& \sqrt{\dfrac{a}{b}}=3\pm 2\sqrt{2} \\
& \Rightarrow \sqrt{\dfrac{a}{b}}=3+2\sqrt{2},\sqrt{\dfrac{a}{b}}=3-2\sqrt{2} \\
\end{align}\]
Let us consider \[\sqrt{\dfrac{a}{b}}=3+2\sqrt{2}\]. This can be also written as,
\[\begin{align}
& \sqrt{\dfrac{a}{b}}={{\left( \sqrt{2} \right)}^{2}}+{{1}^{2}}+2.1.\sqrt{2} \\
& \Rightarrow \sqrt{\dfrac{a}{b}}={{\left( \sqrt{2}+1 \right)}^{2}} \\
& \Rightarrow \sqrt{\dfrac{a}{b}}={{\left( \sqrt{2}+1 \right)}^{2}} \\
& \Rightarrow \sqrt{\dfrac{a}{b}}=\dfrac{{{\left( \sqrt{2}+1 \right)}^{2}}}{\left( \sqrt{2}-1 \right)\left( \sqrt{2}+1 \right)} \\
& \Rightarrow \sqrt{\dfrac{a}{b}}=\dfrac{\left( \sqrt{2}+1 \right)}{\left( \sqrt{2}-1 \right)} \\
\end{align}\]
Squaring both the sides, we get,
\[\begin{align}
& {{\left( \sqrt{\dfrac{a}{b}} \right)}^{2}}=\dfrac{{{\left( \sqrt{2}+1 \right)}^{2}}}{{{\left( \sqrt{2}-1 \right)}^{2}}} \\
& \Rightarrow \dfrac{a}{b}=\dfrac{{{\left( \sqrt{2} \right)}^{2}}+{{1}^{2}}+2.1.\sqrt{2}}{{{\left( \sqrt{2} \right)}^{2}}+{{1}^{2}}-2.1.\sqrt{2}} \\
& \Rightarrow \dfrac{a}{b}=\dfrac{2+1+2\sqrt{2}}{2+1-2\sqrt{2}} \\
& \Rightarrow \dfrac{a}{b}=\dfrac{3+2\sqrt{2}}{3-2\sqrt{2}} \\
\end{align}\]
Hence, we have proved that the ratio of the two numbers is \[\dfrac{3+2\sqrt{2}}{3-2\sqrt{2}}\].
Note: There is a possibility that one may write $t$ as our answer in a hurry to solve the question. But since $t=\sqrt{\dfrac{a}{b}}$ and we are required to find the $\dfrac{a}{b}$ in the question, we have to perform squaring and then answer the question.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE