
The sum of the series \[\dfrac{5}{13}+\dfrac{55}{{{13}^{2}}}+\dfrac{555}{{{13}^{3}}}+.....\infty \] is
(a) \[\dfrac{65}{36}\]
(b) \[\dfrac{65}{32}\]
(c) \[\dfrac{25}{36}\]
(d) None of these
Answer
605.4k+ views
Hint: In this series, first of all, we will multiply \[\dfrac{1}{13}\] on both sides and then subtract this series from the original series. Then G.P would be obtained. Use the formula for the sum of G.P that is \[{{S}_{\infty }}=\dfrac{a}{1-r}\] to get the desired sum.
Complete step-by-step answer:
Here, we have to find the sum of the series \[\dfrac{5}{13}+\dfrac{55}{{{13}^{2}}}+\dfrac{555}{{{13}^{3}}}+.....\infty \].
Let us consider the series given in the question.
\[S=\dfrac{5}{13}+\dfrac{55}{{{13}^{2}}}+\dfrac{555}{{{13}^{3}}}+.....\infty ....\left( i \right)\]
By multiplying both the sides of the above expression by \[\dfrac{1}{13}\], we get,
\[\dfrac{S}{13}=\dfrac{5}{{{\left( 13 \right)}^{2}}}+\dfrac{55}{{{13}^{3}}}+\dfrac{555}{{{13}^{4}}}+.....\infty ....\left( ii \right)\]
Now, by subtracting equation (ii) from equation (i), we get,
\[S-\dfrac{S}{13}=\dfrac{5}{13}+\left( \dfrac{55}{{{13}^{2}}}-\dfrac{5}{{{\left( 13 \right)}^{2}}} \right)+\left( \dfrac{555}{{{13}^{3}}}-\dfrac{55}{{{13}^{3}}} \right)+\left( \dfrac{5555}{{{13}^{4}}}-\dfrac{555}{{{13}^{4}}} \right)+.....\infty \]
By simplifying the above equation, we get,
\[\dfrac{12S}{13}=\dfrac{5}{13}+\left( \dfrac{50}{{{\left( 13 \right)}^{2}}} \right)+\left( \dfrac{500}{{{13}^{3}}} \right)+\left( \dfrac{5000}{{{13}^{4}}} \right)+.....\infty \]
Now by dividing both the sides of the above equation by 5, we get,
\[\dfrac{1}{5}.\dfrac{12S}{13}=\dfrac{1}{13}+\dfrac{10}{{{\left( 13 \right)}^{2}}}+\dfrac{100}{{{13}^{3}}}+\dfrac{1000}{{{13}^{4}}}+.....\infty \]
Or we can also write the above equation as,
\[\dfrac{12S}{65}=\dfrac{1}{13}+\dfrac{10}{{{\left( 13 \right)}^{2}}}+\dfrac{{{\left( 10 \right)}^{2}}}{{{13}^{3}}}+\dfrac{{{\left( 10 \right)}^{3}}}{{{13}^{4}}}+.....\infty ....\left( iii \right)\]
Now, we know the terms of the G.P are of the form \[a,ar,a{{r}^{2}},a{{r}^{3}}.....\]
By comparing the terms of RHS of the equation (iii), with the general terms of the G.P, we get, \[a=\dfrac{1}{13}\] and \[r=\dfrac{10}{13}\].
We know that the sum of the terms of the infinite G.P \[=\dfrac{a}{1-r}\]. By using this in the RHS of equation (iii), we get,
\[\dfrac{12S}{65}=\dfrac{\dfrac{1}{13}}{1-\dfrac{10}{13}}\]
By simplifying the above equation, we get,
\[\dfrac{12S}{65}=\dfrac{\dfrac{1}{13}}{\dfrac{13-10}{13}}\]
Or, \[\dfrac{12S}{65}=\dfrac{1}{3}\]
By cross multiplying the above equation, we get,
\[S=\dfrac{65}{3\times 12}=\dfrac{65}{36}\]
So, we get the sum of the series as \[\dfrac{65}{36}\].
Hence, option (a) is the right answer.
Note: In these types of questions, always try to transform the series into geometric progression by multiplying a suitable number with it. This approach should be there in mind. Also, take special care whether the given series is finite or infinite and use the formula for the sum of the finite series as \[{{S}_{n}}=\dfrac{a\left( 1-{{r}^{n}} \right)}{\left( 1-r \right)}\] and for the sum of the infinite series as \[{{S}_{\infty }}=\dfrac{a}{\left( 1-r \right)}\].
Complete step-by-step answer:
Here, we have to find the sum of the series \[\dfrac{5}{13}+\dfrac{55}{{{13}^{2}}}+\dfrac{555}{{{13}^{3}}}+.....\infty \].
Let us consider the series given in the question.
\[S=\dfrac{5}{13}+\dfrac{55}{{{13}^{2}}}+\dfrac{555}{{{13}^{3}}}+.....\infty ....\left( i \right)\]
By multiplying both the sides of the above expression by \[\dfrac{1}{13}\], we get,
\[\dfrac{S}{13}=\dfrac{5}{{{\left( 13 \right)}^{2}}}+\dfrac{55}{{{13}^{3}}}+\dfrac{555}{{{13}^{4}}}+.....\infty ....\left( ii \right)\]
Now, by subtracting equation (ii) from equation (i), we get,
\[S-\dfrac{S}{13}=\dfrac{5}{13}+\left( \dfrac{55}{{{13}^{2}}}-\dfrac{5}{{{\left( 13 \right)}^{2}}} \right)+\left( \dfrac{555}{{{13}^{3}}}-\dfrac{55}{{{13}^{3}}} \right)+\left( \dfrac{5555}{{{13}^{4}}}-\dfrac{555}{{{13}^{4}}} \right)+.....\infty \]
By simplifying the above equation, we get,
\[\dfrac{12S}{13}=\dfrac{5}{13}+\left( \dfrac{50}{{{\left( 13 \right)}^{2}}} \right)+\left( \dfrac{500}{{{13}^{3}}} \right)+\left( \dfrac{5000}{{{13}^{4}}} \right)+.....\infty \]
Now by dividing both the sides of the above equation by 5, we get,
\[\dfrac{1}{5}.\dfrac{12S}{13}=\dfrac{1}{13}+\dfrac{10}{{{\left( 13 \right)}^{2}}}+\dfrac{100}{{{13}^{3}}}+\dfrac{1000}{{{13}^{4}}}+.....\infty \]
Or we can also write the above equation as,
\[\dfrac{12S}{65}=\dfrac{1}{13}+\dfrac{10}{{{\left( 13 \right)}^{2}}}+\dfrac{{{\left( 10 \right)}^{2}}}{{{13}^{3}}}+\dfrac{{{\left( 10 \right)}^{3}}}{{{13}^{4}}}+.....\infty ....\left( iii \right)\]
Now, we know the terms of the G.P are of the form \[a,ar,a{{r}^{2}},a{{r}^{3}}.....\]
By comparing the terms of RHS of the equation (iii), with the general terms of the G.P, we get, \[a=\dfrac{1}{13}\] and \[r=\dfrac{10}{13}\].
We know that the sum of the terms of the infinite G.P \[=\dfrac{a}{1-r}\]. By using this in the RHS of equation (iii), we get,
\[\dfrac{12S}{65}=\dfrac{\dfrac{1}{13}}{1-\dfrac{10}{13}}\]
By simplifying the above equation, we get,
\[\dfrac{12S}{65}=\dfrac{\dfrac{1}{13}}{\dfrac{13-10}{13}}\]
Or, \[\dfrac{12S}{65}=\dfrac{1}{3}\]
By cross multiplying the above equation, we get,
\[S=\dfrac{65}{3\times 12}=\dfrac{65}{36}\]
So, we get the sum of the series as \[\dfrac{65}{36}\].
Hence, option (a) is the right answer.
Note: In these types of questions, always try to transform the series into geometric progression by multiplying a suitable number with it. This approach should be there in mind. Also, take special care whether the given series is finite or infinite and use the formula for the sum of the finite series as \[{{S}_{n}}=\dfrac{a\left( 1-{{r}^{n}} \right)}{\left( 1-r \right)}\] and for the sum of the infinite series as \[{{S}_{\infty }}=\dfrac{a}{\left( 1-r \right)}\].
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

