
The sum of the first n terms of the series ${{1}^{2}}+{{2.2}^{2}}+{{3}^{2}}+{{2.4}^{2}}+{{5}^{2}}+{{2.6}^{2}}+\cdots $ is $\dfrac{n{{\left( n+1 \right)}^{2}}}{2}$, when n is even. When n is odd sum is:
Answer
505.2k+ views
Hint: According to the given question, we need to find the sum of the series when the number of terms is odd and when the number of terms are even then we are already provided the general term of the sum. Also, we need to keenly observe the given series and then proceed to find the sum.
Complete step-by-step solution:
In the question, we are given series as ${{1}^{2}}+{{2.2}^{2}}+{{3}^{2}}+{{2.4}^{2}}+{{5}^{2}}+{{2.6}^{2}}+\cdots $and we also know that the sum of the series is $\dfrac{n{{\left( n+1 \right)}^{2}}}{2}$where n is even this is provided.
Now, we need to find the sum of the same series but when n is odd. So, for that we need to let $n=2m+1$ . Now, the required sum would be \[\begin{align}
& {{1}^{2}}+{{2.2}^{2}}+{{3}^{2}}+{{2.4}^{2}}+{{5}^{2}}+{{2.6}^{2}}+\cdots +2{{\left( 2m \right)}^{2}}+{{\left( 2m+1 \right)}^{2}} \\
& \Rightarrow \sum{{{\left( 2m+1 \right)}^{2}}+4\left( {{1}^{2}}+{{2}^{2}}+\cdots +{{m}^{2}} \right)} \\
\end{align}\]
Now, from this if we add odd place terms and even place terms then we get,
$\begin{align}
& =\dfrac{\left( 2m+1 \right)\left( 2m+2 \right)\left( 4m+2+1 \right)}{6}+\dfrac{4m\left( m+1 \right)\left( 2m+1 \right)}{6} \\
& \Rightarrow \dfrac{\left( 2m+1 \right)\left( m+1 \right)}{6}\left[ 2\left( 4m+3 \right)+4m \right] \\
& \Rightarrow \dfrac{\left( 2m+1 \right)\left( 2m+2 \right)\left( 6m+3 \right)}{6} \\
& \Rightarrow \dfrac{{{\left( 2m+1 \right)}^{2}}\left( 2m+2 \right)}{2} \\
\end{align}$
Now, we have almost attained the answer, further simplifying this would give us the final answer which is $\dfrac{{{n}^{2}}\left( n+1 \right)}{2}$ .
Therefore, the sum of given series when the number of terms is odd is given by $\dfrac{{{n}^{2}}\left( n+1 \right)}{2}$.
Note: In such a question we need to observe the given series carefully first. Since, most of the times more than one kind of series is mixed in alternate positions and hence we need to just identify that and then proceed in the same way as earlier but for all the different series in order to get the answer of one long series.
Complete step-by-step solution:
In the question, we are given series as ${{1}^{2}}+{{2.2}^{2}}+{{3}^{2}}+{{2.4}^{2}}+{{5}^{2}}+{{2.6}^{2}}+\cdots $and we also know that the sum of the series is $\dfrac{n{{\left( n+1 \right)}^{2}}}{2}$where n is even this is provided.
Now, we need to find the sum of the same series but when n is odd. So, for that we need to let $n=2m+1$ . Now, the required sum would be \[\begin{align}
& {{1}^{2}}+{{2.2}^{2}}+{{3}^{2}}+{{2.4}^{2}}+{{5}^{2}}+{{2.6}^{2}}+\cdots +2{{\left( 2m \right)}^{2}}+{{\left( 2m+1 \right)}^{2}} \\
& \Rightarrow \sum{{{\left( 2m+1 \right)}^{2}}+4\left( {{1}^{2}}+{{2}^{2}}+\cdots +{{m}^{2}} \right)} \\
\end{align}\]
Now, from this if we add odd place terms and even place terms then we get,
$\begin{align}
& =\dfrac{\left( 2m+1 \right)\left( 2m+2 \right)\left( 4m+2+1 \right)}{6}+\dfrac{4m\left( m+1 \right)\left( 2m+1 \right)}{6} \\
& \Rightarrow \dfrac{\left( 2m+1 \right)\left( m+1 \right)}{6}\left[ 2\left( 4m+3 \right)+4m \right] \\
& \Rightarrow \dfrac{\left( 2m+1 \right)\left( 2m+2 \right)\left( 6m+3 \right)}{6} \\
& \Rightarrow \dfrac{{{\left( 2m+1 \right)}^{2}}\left( 2m+2 \right)}{2} \\
\end{align}$
Now, we have almost attained the answer, further simplifying this would give us the final answer which is $\dfrac{{{n}^{2}}\left( n+1 \right)}{2}$ .
Therefore, the sum of given series when the number of terms is odd is given by $\dfrac{{{n}^{2}}\left( n+1 \right)}{2}$.
Note: In such a question we need to observe the given series carefully first. Since, most of the times more than one kind of series is mixed in alternate positions and hence we need to just identify that and then proceed in the same way as earlier but for all the different series in order to get the answer of one long series.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

