Answer

Verified

350.1k+ views

**Hint:**According to the given question, we need to find the sum of the series when the number of terms is odd and when the number of terms are even then we are already provided the general term of the sum. Also, we need to keenly observe the given series and then proceed to find the sum.

**Complete step-by-step solution:**

In the question, we are given series as ${{1}^{2}}+{{2.2}^{2}}+{{3}^{2}}+{{2.4}^{2}}+{{5}^{2}}+{{2.6}^{2}}+\cdots $and we also know that the sum of the series is $\dfrac{n{{\left( n+1 \right)}^{2}}}{2}$where n is even this is provided.

Now, we need to find the sum of the same series but when n is odd. So, for that we need to let $n=2m+1$ . Now, the required sum would be \[\begin{align}

& {{1}^{2}}+{{2.2}^{2}}+{{3}^{2}}+{{2.4}^{2}}+{{5}^{2}}+{{2.6}^{2}}+\cdots +2{{\left( 2m \right)}^{2}}+{{\left( 2m+1 \right)}^{2}} \\

& \Rightarrow \sum{{{\left( 2m+1 \right)}^{2}}+4\left( {{1}^{2}}+{{2}^{2}}+\cdots +{{m}^{2}} \right)} \\

\end{align}\]

Now, from this if we add odd place terms and even place terms then we get,

$\begin{align}

& =\dfrac{\left( 2m+1 \right)\left( 2m+2 \right)\left( 4m+2+1 \right)}{6}+\dfrac{4m\left( m+1 \right)\left( 2m+1 \right)}{6} \\

& \Rightarrow \dfrac{\left( 2m+1 \right)\left( m+1 \right)}{6}\left[ 2\left( 4m+3 \right)+4m \right] \\

& \Rightarrow \dfrac{\left( 2m+1 \right)\left( 2m+2 \right)\left( 6m+3 \right)}{6} \\

& \Rightarrow \dfrac{{{\left( 2m+1 \right)}^{2}}\left( 2m+2 \right)}{2} \\

\end{align}$

Now, we have almost attained the answer, further simplifying this would give us the final answer which is $\dfrac{{{n}^{2}}\left( n+1 \right)}{2}$ .

**Therefore, the sum of given series when the number of terms is odd is given by $\dfrac{{{n}^{2}}\left( n+1 \right)}{2}$.**

**Note:**In such a question we need to observe the given series carefully first. Since, most of the times more than one kind of series is mixed in alternate positions and hence we need to just identify that and then proceed in the same way as earlier but for all the different series in order to get the answer of one long series.

Recently Updated Pages

How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE

Why Are Noble Gases NonReactive class 11 chemistry CBSE

Let X and Y be the sets of all positive divisors of class 11 maths CBSE

Let x and y be 2 real numbers which satisfy the equations class 11 maths CBSE

Let x 4log 2sqrt 9k 1 + 7 and y dfrac132log 2sqrt5 class 11 maths CBSE

Let x22ax+b20 and x22bx+a20 be two equations Then the class 11 maths CBSE

Trending doubts

Guru Purnima speech in English in 100 words class 7 english CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Which are the Top 10 Largest Countries of the World?

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Difference Between Plant Cell and Animal Cell

Change the following sentences into negative and interrogative class 10 english CBSE

Select the word that is correctly spelled a Twelveth class 10 english CBSE

Give 10 examples for herbs , shrubs , climbers , creepers