
The sum of the digits in the units place of all number formed with the help of 3,4,5,6 taken all at a time is
\[
A.{\text{ 18}} \\
B.{\text{ 432}} \\
C.{\text{ 108}} \\
D.{\text{ 144}} \\
\]
Answer
616.5k+ views
Hint: In order to solve such a type of problem first individually consider all the digits for the units place and then find the number of combinations possible for each digit as units digit. Then sum up for each digit and number of times of its appearance.
Complete step-by-step answer:
We know that number of arrangements of n digits in n different place is $n!$
We have 3,4,5,6 as the digits to form the number taking all at once.
This means the number will always be a 4 digit number.
Now let us first consider that units place has 3.
When 3 is in units place then we have 3 different numbers 4, 5, 6 which can be arranged in tens, hundreds and thousands place in $3!$ different ways.
$\therefore $ The sum of the digits in units place when 3 is at the units place
$
= 3! \times 3 \\
= 6 \times 3 = 18 \\
$
Similarly
Now let us consider that units place has 4.
When 4 is in units place then we have 3 different numbers 3, 5, 6 which can be arranged in tens, hundreds and thousands place in $3!$ different ways.
$\therefore $ The sum of the digits in units place when 4 is at the units place
$
= 3! \times 4 \\
= 6 \times 4 = 24 \\
$
Similarly
Now let us consider that units place has 5.
When 5 is in units place then we have 3 different numbers 3, 4, 6 which can be arranged in tens, hundreds and thousands place in $3!$ different ways.
$\therefore $ The sum of the digits in units place when 5 is at the units place
$
= 3! \times 5 \\
= 6 \times 5 = 30 \\
$
Similarly
Now let us consider that units place has 6.
When units place has 6 we have 3 different numbers 3, 4, 5 which can be arranged in tens, hundreds and thousands place in $3!$ different ways.
$\therefore $ The sum of the digits in units place when 6 is at the units place
$
= 3! \times 6 \\
= 6 \times 6 = 36 \\
$
Now finally the sum of the digits in the units place of all numbers formed with the help of 3, 4, 5, 6 taken all at a time is
$
= 3! \times 3 + 3! \times 4 + 3! \times 5 + 3! \times 6 \\
= 6 \times 3 + 6 \times 4 + 6 \times 5 + 6 \times 6 \\
= 18 + 24 + 30 + 36 \\
= 108 \\
$
Hence, the sum of the digits in the units place of all numbers formed with the help of 3,4,5,6 taken all at a time is 108.
So, option C is the correct option.
Note: In order to solve such types of problems always use the concept of permutation and combination. Whenever such a problem has 0 as a digit and a number has to be formed, always keep in mind that 0 cannot be used as the highest place value digit. Students must remember the formula for the number of arrangements that can be made from n digits.
Complete step-by-step answer:
We know that number of arrangements of n digits in n different place is $n!$
We have 3,4,5,6 as the digits to form the number taking all at once.
This means the number will always be a 4 digit number.
Now let us first consider that units place has 3.
When 3 is in units place then we have 3 different numbers 4, 5, 6 which can be arranged in tens, hundreds and thousands place in $3!$ different ways.
$\therefore $ The sum of the digits in units place when 3 is at the units place
$
= 3! \times 3 \\
= 6 \times 3 = 18 \\
$
Similarly
Now let us consider that units place has 4.
When 4 is in units place then we have 3 different numbers 3, 5, 6 which can be arranged in tens, hundreds and thousands place in $3!$ different ways.
$\therefore $ The sum of the digits in units place when 4 is at the units place
$
= 3! \times 4 \\
= 6 \times 4 = 24 \\
$
Similarly
Now let us consider that units place has 5.
When 5 is in units place then we have 3 different numbers 3, 4, 6 which can be arranged in tens, hundreds and thousands place in $3!$ different ways.
$\therefore $ The sum of the digits in units place when 5 is at the units place
$
= 3! \times 5 \\
= 6 \times 5 = 30 \\
$
Similarly
Now let us consider that units place has 6.
When units place has 6 we have 3 different numbers 3, 4, 5 which can be arranged in tens, hundreds and thousands place in $3!$ different ways.
$\therefore $ The sum of the digits in units place when 6 is at the units place
$
= 3! \times 6 \\
= 6 \times 6 = 36 \\
$
Now finally the sum of the digits in the units place of all numbers formed with the help of 3, 4, 5, 6 taken all at a time is
$
= 3! \times 3 + 3! \times 4 + 3! \times 5 + 3! \times 6 \\
= 6 \times 3 + 6 \times 4 + 6 \times 5 + 6 \times 6 \\
= 18 + 24 + 30 + 36 \\
= 108 \\
$
Hence, the sum of the digits in the units place of all numbers formed with the help of 3,4,5,6 taken all at a time is 108.
So, option C is the correct option.
Note: In order to solve such types of problems always use the concept of permutation and combination. Whenever such a problem has 0 as a digit and a number has to be formed, always keep in mind that 0 cannot be used as the highest place value digit. Students must remember the formula for the number of arrangements that can be made from n digits.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE

Draw a labelled diagram of the human heart and label class 11 biology CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

