
The sum of the binomial coefficient of ${\left[ {2x + \dfrac{1}{x}} \right]^n}$ is equal to 256. The constant term in the expansion isA.1120B.2110C.1210 D.None of the above
Answer
608.7k+ views
Hint: The sum of the binomial coefficient is ${2^n}$ and ${t_{r + 1}}$ is called a general term for all $r \in N$ and $0 \leqslant r \leqslant n$ . Using this formula, you can find any term of the expansion.
Complete step-by-step answer:
Note: The possibility for the mistake is that you might get confused for finding the constant term in the given expansion. The constant term in the given expansion that means to get the term independent of x.
Complete step-by-step answer:
Given that, the expansion ${\left[ {2x + \dfrac{1}{x}} \right]^n}$ and the sum of the binomial coefficient = 256.
We know that,
The sum of the binomial coefficient $ = {2^n} $, where n is the number of terms
$256 = {2^n}$
We have $256 = {2^8}$
${2^8} = {2^n}$
$8 = n$
Hence $n = 8$
Now, comparing the given expansion ${\left[ {2x + \dfrac{1}{x}} \right]^n}$ with the expansion ${\left( {a + b} \right)^n}$ and then we have
$a = 2x$ and $b = \dfrac{1}{x}$
The formula for general term for the expansion ${\left( {a + b} \right)^n}$ is given by
${t_{r + 1}} = {}^n{C_r}{a^{n - r}}{b^r}.................(1),{\text{ for all }}r \in N{\text{ and }}0 \leqslant r \leqslant n$
Here, $a = 2x,{\text{ }}b = \dfrac{1}{x}{\text{ and }}n = 8$
Now put all the values in the equation (1), we get
${t_{r + 1}} = {}^8{C_r}{(2x)^{8 - r}}{\left( {\dfrac{1}{x}} \right)^r}$
The rearranging the terms by using the indices formulae, we get
${t_{r + 1}} = {}^8{C_r}{(2)^{8 - r}}{\left( x \right)^{8 - r}}\dfrac{1}{{{x^r}}}$
$\Rightarrow {t_{r + 1}} = {}^8{C_r}{(2)^{8 - r}}{\left( x \right)^{8 - r}}{(x)^{ - r}}$
$\Rightarrow {t_{r + 1}} = {}^8{C_r}{(2)^{8 - r}}{\left( x \right)^{8 - r - r}}$
$\Rightarrow {t_{r + 1}} = {}^8{C_r}{(2)^{8 - r}}{\left( x \right)^{8 - 2r}}...........(2)$
To get the constant term that means the term independent of x, we must have
${x^{8 - 2r}} = {x^0}$
$\Rightarrow 8 - 2r = 0$
$\Rightarrow 2r = 8$
Dividing both sides by 2, we get
$r = 4$
The constant term in the equation (2) is given by
Constant term $ = {}^8{C_r}{(2)^{8 - r}}.............(3)$
Now put r = 4 in the equation (3), we get
Constant term $ = {}^8{C_4}{(2)^{8 - 4}}$
Constant term $ = {}^8{C_4}{(2)^4}$
We have
${2^4} = 16$
Constant term $ = 16 {}^8{C_4}..............(4)$
We know that the formula for combination, ${}^n{C_r} = \dfrac{{n!}}{{r!(n - r)!}}$
${}^8{C_4} = \dfrac{{8!}}{{4!(8 - 4)!}} = \dfrac{{8!}}{{4! \times 4!}} = \dfrac{{8 \times 7 \times 6 \times 5}}{{1 \times 2 \times 3 \times 4}} = \dfrac{{7 \times 2 \times 5}}{1} = 70$
Now put the value of ${}^8{C_2}$ in the equation (4), we get
Constant term $ = 16 \times 70$
Constant term in the given expansion $ = 1120$
Hence the correct option of the given question is option (a).
Note: The possibility for the mistake is that you might get confused for finding the constant term in the given expansion. The constant term in the given expansion that means to get the term independent of x.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

The computer jargonwwww stands for Aworld wide web class 12 physics CBSE

State the principle of an ac generator and explain class 12 physics CBSE

