
The sum of the binomial coefficient of ${\left[ {2x + \dfrac{1}{x}} \right]^n}$ is equal to 256. The constant term in the expansion isA.1120B.2110C.1210 D.None of the above
Answer
600k+ views
Hint: The sum of the binomial coefficient is ${2^n}$ and ${t_{r + 1}}$ is called a general term for all $r \in N$ and $0 \leqslant r \leqslant n$ . Using this formula, you can find any term of the expansion.
Complete step-by-step answer:
Note: The possibility for the mistake is that you might get confused for finding the constant term in the given expansion. The constant term in the given expansion that means to get the term independent of x.
Complete step-by-step answer:
Given that, the expansion ${\left[ {2x + \dfrac{1}{x}} \right]^n}$ and the sum of the binomial coefficient = 256.
We know that,
The sum of the binomial coefficient $ = {2^n} $, where n is the number of terms
$256 = {2^n}$
We have $256 = {2^8}$
${2^8} = {2^n}$
$8 = n$
Hence $n = 8$
Now, comparing the given expansion ${\left[ {2x + \dfrac{1}{x}} \right]^n}$ with the expansion ${\left( {a + b} \right)^n}$ and then we have
$a = 2x$ and $b = \dfrac{1}{x}$
The formula for general term for the expansion ${\left( {a + b} \right)^n}$ is given by
${t_{r + 1}} = {}^n{C_r}{a^{n - r}}{b^r}.................(1),{\text{ for all }}r \in N{\text{ and }}0 \leqslant r \leqslant n$
Here, $a = 2x,{\text{ }}b = \dfrac{1}{x}{\text{ and }}n = 8$
Now put all the values in the equation (1), we get
${t_{r + 1}} = {}^8{C_r}{(2x)^{8 - r}}{\left( {\dfrac{1}{x}} \right)^r}$
The rearranging the terms by using the indices formulae, we get
${t_{r + 1}} = {}^8{C_r}{(2)^{8 - r}}{\left( x \right)^{8 - r}}\dfrac{1}{{{x^r}}}$
$\Rightarrow {t_{r + 1}} = {}^8{C_r}{(2)^{8 - r}}{\left( x \right)^{8 - r}}{(x)^{ - r}}$
$\Rightarrow {t_{r + 1}} = {}^8{C_r}{(2)^{8 - r}}{\left( x \right)^{8 - r - r}}$
$\Rightarrow {t_{r + 1}} = {}^8{C_r}{(2)^{8 - r}}{\left( x \right)^{8 - 2r}}...........(2)$
To get the constant term that means the term independent of x, we must have
${x^{8 - 2r}} = {x^0}$
$\Rightarrow 8 - 2r = 0$
$\Rightarrow 2r = 8$
Dividing both sides by 2, we get
$r = 4$
The constant term in the equation (2) is given by
Constant term $ = {}^8{C_r}{(2)^{8 - r}}.............(3)$
Now put r = 4 in the equation (3), we get
Constant term $ = {}^8{C_4}{(2)^{8 - 4}}$
Constant term $ = {}^8{C_4}{(2)^4}$
We have
${2^4} = 16$
Constant term $ = 16 {}^8{C_4}..............(4)$
We know that the formula for combination, ${}^n{C_r} = \dfrac{{n!}}{{r!(n - r)!}}$
${}^8{C_4} = \dfrac{{8!}}{{4!(8 - 4)!}} = \dfrac{{8!}}{{4! \times 4!}} = \dfrac{{8 \times 7 \times 6 \times 5}}{{1 \times 2 \times 3 \times 4}} = \dfrac{{7 \times 2 \times 5}}{1} = 70$
Now put the value of ${}^8{C_2}$ in the equation (4), we get
Constant term $ = 16 \times 70$
Constant term in the given expansion $ = 1120$
Hence the correct option of the given question is option (a).
Note: The possibility for the mistake is that you might get confused for finding the constant term in the given expansion. The constant term in the given expansion that means to get the term independent of x.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

