
The sum of intercepts to the tangents to the curve \[\sqrt x + \sqrt y = \sqrt a \] upon the coordinate axes is
A. \[2a\]
B. \[a\]
C. \[2\sqrt 2 a\]
D. None of these
Answer
606.9k+ views
Hint: Consider any point on the given curve and find the tangent to the curve at the considered point. Then take out the intercepts to the obtained tangent and add them, which gives the required solution.
Complete step-by-step answer:
Let \[P\left( {{x_1},{y_1}} \right)\] be a point on the curve \[\sqrt x + \sqrt y = \sqrt a \]
Then, \[\sqrt {{x_1}} + \sqrt {{y_1}} = \sqrt a .................................\left( i \right)\]
Now, differentiating the curve \[\sqrt x + \sqrt y = \sqrt a \], we have
\[
\Rightarrow \dfrac{{d\left( {\sqrt x } \right)}}{{dx}} + \dfrac{{d\left( {\sqrt y } \right)}}{{dx}} = \dfrac{{d\left( {\sqrt a } \right)}}{{dx}} \\
\Rightarrow \dfrac{1}{{2\sqrt x }} + \dfrac{1}{{2\sqrt y }}\dfrac{{dy}}{{dx}} = 0 \\
\Rightarrow \dfrac{{dy}}{{dx}} = - \dfrac{{\sqrt y }}{{\sqrt x }} \\
\]
So, the slope of the tangent at \[P\left( {{x_1},{y_1}} \right)\] to the curve \[\sqrt x + \sqrt y = \sqrt a \] is
\[{\left( {\dfrac{{dy}}{{dx}}} \right)_P} = - \dfrac{{\sqrt {{y_1}} }}{{\sqrt {{x_1}} }}\]
The equation of the tangent at \[P\left( {{x_1},{y_1}} \right)\] to the curve \[\sqrt x + \sqrt y = \sqrt a \] is
\[
y - {y_1} = {\left( {\dfrac{{dy}}{{dx}}} \right)_P}\left( {x - {x_1}} \right) \\
\Rightarrow y - {y_1} = - \dfrac{{\sqrt {{y_1}} }}{{\sqrt {{x_1}} }}\left( {x - {x_1}} \right) \\
\Rightarrow \left( {y - {y_1}} \right)\sqrt {{x_1}} = - \sqrt {{y_1}} \left( {x - {x_1}} \right) \\
\Rightarrow y\sqrt {{x_1}} - {y_1}\sqrt {{x_1}} = - x\sqrt {{y_1}} + {x_1}\sqrt {{y_1}} \\
\Rightarrow x\sqrt {{y_1}} + y\sqrt {{x_1}} = {x_1}\sqrt {{y_1}} + {y_1}\sqrt {{x_1}} \\
\]
Dividing both sides with \[\sqrt {{x_1}} \sqrt {{y_1}} \] we have
\[ \Rightarrow \dfrac{x}{{\sqrt {{x_1}} }} + \dfrac{y}{{\sqrt {{y_1}} }} = \sqrt {{x_1}} + \sqrt {{y_1}} \]
Since, \[\sqrt {{x_1}} + \sqrt {{y_1}} = \sqrt a \]
\[
\Rightarrow \dfrac{x}{{\sqrt {{x_1}} }} + \dfrac{y}{{\sqrt {{y_1}} }} = \sqrt a \\
\Rightarrow \dfrac{x}{{\sqrt a \sqrt {{x_1}} }} + \dfrac{y}{{\sqrt a \sqrt {{y_1}} }} = 1 \\
\Rightarrow \dfrac{x}{{\sqrt {a{x_1}} }} + \dfrac{y}{{\sqrt {a{y_1}} }} = 1 \\
\]
We know that if \[\dfrac{x}{a} + \dfrac{y}{b} = 1\] is the equation of the line, then the intercepts upon the coordinate axes is \[a{\text{ and }}b\].
So, the intercepts of the formed tangent \[\dfrac{x}{{\sqrt {a{x_1}} }} + \dfrac{y}{{\sqrt {a{y_1}} }} = 1\] is \[\sqrt {a{x_1}} {\text{ and }}\sqrt {a{y_1}} \].
Therefore, the sum of the intercepts is
\[
\Rightarrow \sqrt {a{x_1}} + \sqrt {a{y_1}} \\
\Rightarrow \sqrt a \left( {\sqrt {{x_1}} + \sqrt {{y_1}} } \right) \\
\]
Since, we have \[\sqrt {{x_1}} + \sqrt {{y_1}} = \sqrt a \]
\[
\Rightarrow \sqrt a \left( {\sqrt a } \right) \\
\Rightarrow a \\
\]
Therefore, the sum of the intercepts of the curve \[\sqrt x + \sqrt y = \sqrt a \] upon the coordinate axes is \[a\].
Thus, the correct option is B. \[a\]
Note: Here the tangent must touch both the coordinate axes to form intercepts. In the given above formula \[a\] is the length of \[x\] axis intercept and \[b\] is the length of \[y\] axis intercept.
Complete step-by-step answer:
Let \[P\left( {{x_1},{y_1}} \right)\] be a point on the curve \[\sqrt x + \sqrt y = \sqrt a \]
Then, \[\sqrt {{x_1}} + \sqrt {{y_1}} = \sqrt a .................................\left( i \right)\]
Now, differentiating the curve \[\sqrt x + \sqrt y = \sqrt a \], we have
\[
\Rightarrow \dfrac{{d\left( {\sqrt x } \right)}}{{dx}} + \dfrac{{d\left( {\sqrt y } \right)}}{{dx}} = \dfrac{{d\left( {\sqrt a } \right)}}{{dx}} \\
\Rightarrow \dfrac{1}{{2\sqrt x }} + \dfrac{1}{{2\sqrt y }}\dfrac{{dy}}{{dx}} = 0 \\
\Rightarrow \dfrac{{dy}}{{dx}} = - \dfrac{{\sqrt y }}{{\sqrt x }} \\
\]
So, the slope of the tangent at \[P\left( {{x_1},{y_1}} \right)\] to the curve \[\sqrt x + \sqrt y = \sqrt a \] is
\[{\left( {\dfrac{{dy}}{{dx}}} \right)_P} = - \dfrac{{\sqrt {{y_1}} }}{{\sqrt {{x_1}} }}\]
The equation of the tangent at \[P\left( {{x_1},{y_1}} \right)\] to the curve \[\sqrt x + \sqrt y = \sqrt a \] is
\[
y - {y_1} = {\left( {\dfrac{{dy}}{{dx}}} \right)_P}\left( {x - {x_1}} \right) \\
\Rightarrow y - {y_1} = - \dfrac{{\sqrt {{y_1}} }}{{\sqrt {{x_1}} }}\left( {x - {x_1}} \right) \\
\Rightarrow \left( {y - {y_1}} \right)\sqrt {{x_1}} = - \sqrt {{y_1}} \left( {x - {x_1}} \right) \\
\Rightarrow y\sqrt {{x_1}} - {y_1}\sqrt {{x_1}} = - x\sqrt {{y_1}} + {x_1}\sqrt {{y_1}} \\
\Rightarrow x\sqrt {{y_1}} + y\sqrt {{x_1}} = {x_1}\sqrt {{y_1}} + {y_1}\sqrt {{x_1}} \\
\]
Dividing both sides with \[\sqrt {{x_1}} \sqrt {{y_1}} \] we have
\[ \Rightarrow \dfrac{x}{{\sqrt {{x_1}} }} + \dfrac{y}{{\sqrt {{y_1}} }} = \sqrt {{x_1}} + \sqrt {{y_1}} \]
Since, \[\sqrt {{x_1}} + \sqrt {{y_1}} = \sqrt a \]
\[
\Rightarrow \dfrac{x}{{\sqrt {{x_1}} }} + \dfrac{y}{{\sqrt {{y_1}} }} = \sqrt a \\
\Rightarrow \dfrac{x}{{\sqrt a \sqrt {{x_1}} }} + \dfrac{y}{{\sqrt a \sqrt {{y_1}} }} = 1 \\
\Rightarrow \dfrac{x}{{\sqrt {a{x_1}} }} + \dfrac{y}{{\sqrt {a{y_1}} }} = 1 \\
\]
We know that if \[\dfrac{x}{a} + \dfrac{y}{b} = 1\] is the equation of the line, then the intercepts upon the coordinate axes is \[a{\text{ and }}b\].
So, the intercepts of the formed tangent \[\dfrac{x}{{\sqrt {a{x_1}} }} + \dfrac{y}{{\sqrt {a{y_1}} }} = 1\] is \[\sqrt {a{x_1}} {\text{ and }}\sqrt {a{y_1}} \].
Therefore, the sum of the intercepts is
\[
\Rightarrow \sqrt {a{x_1}} + \sqrt {a{y_1}} \\
\Rightarrow \sqrt a \left( {\sqrt {{x_1}} + \sqrt {{y_1}} } \right) \\
\]
Since, we have \[\sqrt {{x_1}} + \sqrt {{y_1}} = \sqrt a \]
\[
\Rightarrow \sqrt a \left( {\sqrt a } \right) \\
\Rightarrow a \\
\]
Therefore, the sum of the intercepts of the curve \[\sqrt x + \sqrt y = \sqrt a \] upon the coordinate axes is \[a\].
Thus, the correct option is B. \[a\]
Note: Here the tangent must touch both the coordinate axes to form intercepts. In the given above formula \[a\] is the length of \[x\] axis intercept and \[b\] is the length of \[y\] axis intercept.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

