Answer

Verified

482.4k+ views

Hint: Consider any point on the given curve and find the tangent to the curve at the considered point. Then take out the intercepts to the obtained tangent and add them, which gives the required solution.

Complete step-by-step answer:

Let \[P\left( {{x_1},{y_1}} \right)\] be a point on the curve \[\sqrt x + \sqrt y = \sqrt a \]

Then, \[\sqrt {{x_1}} + \sqrt {{y_1}} = \sqrt a .................................\left( i \right)\]

Now, differentiating the curve \[\sqrt x + \sqrt y = \sqrt a \], we have

\[

\Rightarrow \dfrac{{d\left( {\sqrt x } \right)}}{{dx}} + \dfrac{{d\left( {\sqrt y } \right)}}{{dx}} = \dfrac{{d\left( {\sqrt a } \right)}}{{dx}} \\

\Rightarrow \dfrac{1}{{2\sqrt x }} + \dfrac{1}{{2\sqrt y }}\dfrac{{dy}}{{dx}} = 0 \\

\Rightarrow \dfrac{{dy}}{{dx}} = - \dfrac{{\sqrt y }}{{\sqrt x }} \\

\]

So, the slope of the tangent at \[P\left( {{x_1},{y_1}} \right)\] to the curve \[\sqrt x + \sqrt y = \sqrt a \] is

\[{\left( {\dfrac{{dy}}{{dx}}} \right)_P} = - \dfrac{{\sqrt {{y_1}} }}{{\sqrt {{x_1}} }}\]

The equation of the tangent at \[P\left( {{x_1},{y_1}} \right)\] to the curve \[\sqrt x + \sqrt y = \sqrt a \] is

\[

y - {y_1} = {\left( {\dfrac{{dy}}{{dx}}} \right)_P}\left( {x - {x_1}} \right) \\

\Rightarrow y - {y_1} = - \dfrac{{\sqrt {{y_1}} }}{{\sqrt {{x_1}} }}\left( {x - {x_1}} \right) \\

\Rightarrow \left( {y - {y_1}} \right)\sqrt {{x_1}} = - \sqrt {{y_1}} \left( {x - {x_1}} \right) \\

\Rightarrow y\sqrt {{x_1}} - {y_1}\sqrt {{x_1}} = - x\sqrt {{y_1}} + {x_1}\sqrt {{y_1}} \\

\Rightarrow x\sqrt {{y_1}} + y\sqrt {{x_1}} = {x_1}\sqrt {{y_1}} + {y_1}\sqrt {{x_1}} \\

\]

Dividing both sides with \[\sqrt {{x_1}} \sqrt {{y_1}} \] we have

\[ \Rightarrow \dfrac{x}{{\sqrt {{x_1}} }} + \dfrac{y}{{\sqrt {{y_1}} }} = \sqrt {{x_1}} + \sqrt {{y_1}} \]

Since, \[\sqrt {{x_1}} + \sqrt {{y_1}} = \sqrt a \]

\[

\Rightarrow \dfrac{x}{{\sqrt {{x_1}} }} + \dfrac{y}{{\sqrt {{y_1}} }} = \sqrt a \\

\Rightarrow \dfrac{x}{{\sqrt a \sqrt {{x_1}} }} + \dfrac{y}{{\sqrt a \sqrt {{y_1}} }} = 1 \\

\Rightarrow \dfrac{x}{{\sqrt {a{x_1}} }} + \dfrac{y}{{\sqrt {a{y_1}} }} = 1 \\

\]

We know that if \[\dfrac{x}{a} + \dfrac{y}{b} = 1\] is the equation of the line, then the intercepts upon the coordinate axes is \[a{\text{ and }}b\].

So, the intercepts of the formed tangent \[\dfrac{x}{{\sqrt {a{x_1}} }} + \dfrac{y}{{\sqrt {a{y_1}} }} = 1\] is \[\sqrt {a{x_1}} {\text{ and }}\sqrt {a{y_1}} \].

Therefore, the sum of the intercepts is

\[

\Rightarrow \sqrt {a{x_1}} + \sqrt {a{y_1}} \\

\Rightarrow \sqrt a \left( {\sqrt {{x_1}} + \sqrt {{y_1}} } \right) \\

\]

Since, we have \[\sqrt {{x_1}} + \sqrt {{y_1}} = \sqrt a \]

\[

\Rightarrow \sqrt a \left( {\sqrt a } \right) \\

\Rightarrow a \\

\]

Therefore, the sum of the intercepts of the curve \[\sqrt x + \sqrt y = \sqrt a \] upon the coordinate axes is \[a\].

Thus, the correct option is B. \[a\]

Note: Here the tangent must touch both the coordinate axes to form intercepts. In the given above formula \[a\] is the length of \[x\] axis intercept and \[b\] is the length of \[y\] axis intercept.

Complete step-by-step answer:

Let \[P\left( {{x_1},{y_1}} \right)\] be a point on the curve \[\sqrt x + \sqrt y = \sqrt a \]

Then, \[\sqrt {{x_1}} + \sqrt {{y_1}} = \sqrt a .................................\left( i \right)\]

Now, differentiating the curve \[\sqrt x + \sqrt y = \sqrt a \], we have

\[

\Rightarrow \dfrac{{d\left( {\sqrt x } \right)}}{{dx}} + \dfrac{{d\left( {\sqrt y } \right)}}{{dx}} = \dfrac{{d\left( {\sqrt a } \right)}}{{dx}} \\

\Rightarrow \dfrac{1}{{2\sqrt x }} + \dfrac{1}{{2\sqrt y }}\dfrac{{dy}}{{dx}} = 0 \\

\Rightarrow \dfrac{{dy}}{{dx}} = - \dfrac{{\sqrt y }}{{\sqrt x }} \\

\]

So, the slope of the tangent at \[P\left( {{x_1},{y_1}} \right)\] to the curve \[\sqrt x + \sqrt y = \sqrt a \] is

\[{\left( {\dfrac{{dy}}{{dx}}} \right)_P} = - \dfrac{{\sqrt {{y_1}} }}{{\sqrt {{x_1}} }}\]

The equation of the tangent at \[P\left( {{x_1},{y_1}} \right)\] to the curve \[\sqrt x + \sqrt y = \sqrt a \] is

\[

y - {y_1} = {\left( {\dfrac{{dy}}{{dx}}} \right)_P}\left( {x - {x_1}} \right) \\

\Rightarrow y - {y_1} = - \dfrac{{\sqrt {{y_1}} }}{{\sqrt {{x_1}} }}\left( {x - {x_1}} \right) \\

\Rightarrow \left( {y - {y_1}} \right)\sqrt {{x_1}} = - \sqrt {{y_1}} \left( {x - {x_1}} \right) \\

\Rightarrow y\sqrt {{x_1}} - {y_1}\sqrt {{x_1}} = - x\sqrt {{y_1}} + {x_1}\sqrt {{y_1}} \\

\Rightarrow x\sqrt {{y_1}} + y\sqrt {{x_1}} = {x_1}\sqrt {{y_1}} + {y_1}\sqrt {{x_1}} \\

\]

Dividing both sides with \[\sqrt {{x_1}} \sqrt {{y_1}} \] we have

\[ \Rightarrow \dfrac{x}{{\sqrt {{x_1}} }} + \dfrac{y}{{\sqrt {{y_1}} }} = \sqrt {{x_1}} + \sqrt {{y_1}} \]

Since, \[\sqrt {{x_1}} + \sqrt {{y_1}} = \sqrt a \]

\[

\Rightarrow \dfrac{x}{{\sqrt {{x_1}} }} + \dfrac{y}{{\sqrt {{y_1}} }} = \sqrt a \\

\Rightarrow \dfrac{x}{{\sqrt a \sqrt {{x_1}} }} + \dfrac{y}{{\sqrt a \sqrt {{y_1}} }} = 1 \\

\Rightarrow \dfrac{x}{{\sqrt {a{x_1}} }} + \dfrac{y}{{\sqrt {a{y_1}} }} = 1 \\

\]

We know that if \[\dfrac{x}{a} + \dfrac{y}{b} = 1\] is the equation of the line, then the intercepts upon the coordinate axes is \[a{\text{ and }}b\].

So, the intercepts of the formed tangent \[\dfrac{x}{{\sqrt {a{x_1}} }} + \dfrac{y}{{\sqrt {a{y_1}} }} = 1\] is \[\sqrt {a{x_1}} {\text{ and }}\sqrt {a{y_1}} \].

Therefore, the sum of the intercepts is

\[

\Rightarrow \sqrt {a{x_1}} + \sqrt {a{y_1}} \\

\Rightarrow \sqrt a \left( {\sqrt {{x_1}} + \sqrt {{y_1}} } \right) \\

\]

Since, we have \[\sqrt {{x_1}} + \sqrt {{y_1}} = \sqrt a \]

\[

\Rightarrow \sqrt a \left( {\sqrt a } \right) \\

\Rightarrow a \\

\]

Therefore, the sum of the intercepts of the curve \[\sqrt x + \sqrt y = \sqrt a \] upon the coordinate axes is \[a\].

Thus, the correct option is B. \[a\]

Note: Here the tangent must touch both the coordinate axes to form intercepts. In the given above formula \[a\] is the length of \[x\] axis intercept and \[b\] is the length of \[y\] axis intercept.

Recently Updated Pages

what is the correct chronological order of the following class 10 social science CBSE

Which of the following was not the actual cause for class 10 social science CBSE

Which of the following statements is not correct A class 10 social science CBSE

Which of the following leaders was not present in the class 10 social science CBSE

Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE

Which one of the following places is not covered by class 10 social science CBSE

Trending doubts

Which are the Top 10 Largest Countries of the World?

Who was the Governor general of India at the time of class 11 social science CBSE

How do you graph the function fx 4x class 9 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

Difference Between Plant Cell and Animal Cell