# The sum of intercepts to the tangents to the curve \[\sqrt x + \sqrt y = \sqrt a \] upon the coordinate axes is

A. \[2a\]

B. \[a\]

C. \[2\sqrt 2 a\]

D. None of these

Answer

Verified

363k+ views

Hint: Consider any point on the given curve and find the tangent to the curve at the considered point. Then take out the intercepts to the obtained tangent and add them, which gives the required solution.

Complete step-by-step answer:

Let \[P\left( {{x_1},{y_1}} \right)\] be a point on the curve \[\sqrt x + \sqrt y = \sqrt a \]

Then, \[\sqrt {{x_1}} + \sqrt {{y_1}} = \sqrt a .................................\left( i \right)\]

Now, differentiating the curve \[\sqrt x + \sqrt y = \sqrt a \], we have

\[

\Rightarrow \dfrac{{d\left( {\sqrt x } \right)}}{{dx}} + \dfrac{{d\left( {\sqrt y } \right)}}{{dx}} = \dfrac{{d\left( {\sqrt a } \right)}}{{dx}} \\

\Rightarrow \dfrac{1}{{2\sqrt x }} + \dfrac{1}{{2\sqrt y }}\dfrac{{dy}}{{dx}} = 0 \\

\Rightarrow \dfrac{{dy}}{{dx}} = - \dfrac{{\sqrt y }}{{\sqrt x }} \\

\]

So, the slope of the tangent at \[P\left( {{x_1},{y_1}} \right)\] to the curve \[\sqrt x + \sqrt y = \sqrt a \] is

\[{\left( {\dfrac{{dy}}{{dx}}} \right)_P} = - \dfrac{{\sqrt {{y_1}} }}{{\sqrt {{x_1}} }}\]

The equation of the tangent at \[P\left( {{x_1},{y_1}} \right)\] to the curve \[\sqrt x + \sqrt y = \sqrt a \] is

\[

y - {y_1} = {\left( {\dfrac{{dy}}{{dx}}} \right)_P}\left( {x - {x_1}} \right) \\

\Rightarrow y - {y_1} = - \dfrac{{\sqrt {{y_1}} }}{{\sqrt {{x_1}} }}\left( {x - {x_1}} \right) \\

\Rightarrow \left( {y - {y_1}} \right)\sqrt {{x_1}} = - \sqrt {{y_1}} \left( {x - {x_1}} \right) \\

\Rightarrow y\sqrt {{x_1}} - {y_1}\sqrt {{x_1}} = - x\sqrt {{y_1}} + {x_1}\sqrt {{y_1}} \\

\Rightarrow x\sqrt {{y_1}} + y\sqrt {{x_1}} = {x_1}\sqrt {{y_1}} + {y_1}\sqrt {{x_1}} \\

\]

Dividing both sides with \[\sqrt {{x_1}} \sqrt {{y_1}} \] we have

\[ \Rightarrow \dfrac{x}{{\sqrt {{x_1}} }} + \dfrac{y}{{\sqrt {{y_1}} }} = \sqrt {{x_1}} + \sqrt {{y_1}} \]

Since, \[\sqrt {{x_1}} + \sqrt {{y_1}} = \sqrt a \]

\[

\Rightarrow \dfrac{x}{{\sqrt {{x_1}} }} + \dfrac{y}{{\sqrt {{y_1}} }} = \sqrt a \\

\Rightarrow \dfrac{x}{{\sqrt a \sqrt {{x_1}} }} + \dfrac{y}{{\sqrt a \sqrt {{y_1}} }} = 1 \\

\Rightarrow \dfrac{x}{{\sqrt {a{x_1}} }} + \dfrac{y}{{\sqrt {a{y_1}} }} = 1 \\

\]

We know that if \[\dfrac{x}{a} + \dfrac{y}{b} = 1\] is the equation of the line, then the intercepts upon the coordinate axes is \[a{\text{ and }}b\].

So, the intercepts of the formed tangent \[\dfrac{x}{{\sqrt {a{x_1}} }} + \dfrac{y}{{\sqrt {a{y_1}} }} = 1\] is \[\sqrt {a{x_1}} {\text{ and }}\sqrt {a{y_1}} \].

Therefore, the sum of the intercepts is

\[

\Rightarrow \sqrt {a{x_1}} + \sqrt {a{y_1}} \\

\Rightarrow \sqrt a \left( {\sqrt {{x_1}} + \sqrt {{y_1}} } \right) \\

\]

Since, we have \[\sqrt {{x_1}} + \sqrt {{y_1}} = \sqrt a \]

\[

\Rightarrow \sqrt a \left( {\sqrt a } \right) \\

\Rightarrow a \\

\]

Therefore, the sum of the intercepts of the curve \[\sqrt x + \sqrt y = \sqrt a \] upon the coordinate axes is \[a\].

Thus, the correct option is B. \[a\]

Note: Here the tangent must touch both the coordinate axes to form intercepts. In the given above formula \[a\] is the length of \[x\] axis intercept and \[b\] is the length of \[y\] axis intercept.

Complete step-by-step answer:

Let \[P\left( {{x_1},{y_1}} \right)\] be a point on the curve \[\sqrt x + \sqrt y = \sqrt a \]

Then, \[\sqrt {{x_1}} + \sqrt {{y_1}} = \sqrt a .................................\left( i \right)\]

Now, differentiating the curve \[\sqrt x + \sqrt y = \sqrt a \], we have

\[

\Rightarrow \dfrac{{d\left( {\sqrt x } \right)}}{{dx}} + \dfrac{{d\left( {\sqrt y } \right)}}{{dx}} = \dfrac{{d\left( {\sqrt a } \right)}}{{dx}} \\

\Rightarrow \dfrac{1}{{2\sqrt x }} + \dfrac{1}{{2\sqrt y }}\dfrac{{dy}}{{dx}} = 0 \\

\Rightarrow \dfrac{{dy}}{{dx}} = - \dfrac{{\sqrt y }}{{\sqrt x }} \\

\]

So, the slope of the tangent at \[P\left( {{x_1},{y_1}} \right)\] to the curve \[\sqrt x + \sqrt y = \sqrt a \] is

\[{\left( {\dfrac{{dy}}{{dx}}} \right)_P} = - \dfrac{{\sqrt {{y_1}} }}{{\sqrt {{x_1}} }}\]

The equation of the tangent at \[P\left( {{x_1},{y_1}} \right)\] to the curve \[\sqrt x + \sqrt y = \sqrt a \] is

\[

y - {y_1} = {\left( {\dfrac{{dy}}{{dx}}} \right)_P}\left( {x - {x_1}} \right) \\

\Rightarrow y - {y_1} = - \dfrac{{\sqrt {{y_1}} }}{{\sqrt {{x_1}} }}\left( {x - {x_1}} \right) \\

\Rightarrow \left( {y - {y_1}} \right)\sqrt {{x_1}} = - \sqrt {{y_1}} \left( {x - {x_1}} \right) \\

\Rightarrow y\sqrt {{x_1}} - {y_1}\sqrt {{x_1}} = - x\sqrt {{y_1}} + {x_1}\sqrt {{y_1}} \\

\Rightarrow x\sqrt {{y_1}} + y\sqrt {{x_1}} = {x_1}\sqrt {{y_1}} + {y_1}\sqrt {{x_1}} \\

\]

Dividing both sides with \[\sqrt {{x_1}} \sqrt {{y_1}} \] we have

\[ \Rightarrow \dfrac{x}{{\sqrt {{x_1}} }} + \dfrac{y}{{\sqrt {{y_1}} }} = \sqrt {{x_1}} + \sqrt {{y_1}} \]

Since, \[\sqrt {{x_1}} + \sqrt {{y_1}} = \sqrt a \]

\[

\Rightarrow \dfrac{x}{{\sqrt {{x_1}} }} + \dfrac{y}{{\sqrt {{y_1}} }} = \sqrt a \\

\Rightarrow \dfrac{x}{{\sqrt a \sqrt {{x_1}} }} + \dfrac{y}{{\sqrt a \sqrt {{y_1}} }} = 1 \\

\Rightarrow \dfrac{x}{{\sqrt {a{x_1}} }} + \dfrac{y}{{\sqrt {a{y_1}} }} = 1 \\

\]

We know that if \[\dfrac{x}{a} + \dfrac{y}{b} = 1\] is the equation of the line, then the intercepts upon the coordinate axes is \[a{\text{ and }}b\].

So, the intercepts of the formed tangent \[\dfrac{x}{{\sqrt {a{x_1}} }} + \dfrac{y}{{\sqrt {a{y_1}} }} = 1\] is \[\sqrt {a{x_1}} {\text{ and }}\sqrt {a{y_1}} \].

Therefore, the sum of the intercepts is

\[

\Rightarrow \sqrt {a{x_1}} + \sqrt {a{y_1}} \\

\Rightarrow \sqrt a \left( {\sqrt {{x_1}} + \sqrt {{y_1}} } \right) \\

\]

Since, we have \[\sqrt {{x_1}} + \sqrt {{y_1}} = \sqrt a \]

\[

\Rightarrow \sqrt a \left( {\sqrt a } \right) \\

\Rightarrow a \\

\]

Therefore, the sum of the intercepts of the curve \[\sqrt x + \sqrt y = \sqrt a \] upon the coordinate axes is \[a\].

Thus, the correct option is B. \[a\]

Note: Here the tangent must touch both the coordinate axes to form intercepts. In the given above formula \[a\] is the length of \[x\] axis intercept and \[b\] is the length of \[y\] axis intercept.

Last updated date: 01st Oct 2023

â€¢

Total views: 363k

â€¢

Views today: 5.63k

Recently Updated Pages

What do you mean by public facilities

Difference between hardware and software

Disadvantages of Advertising

10 Advantages and Disadvantages of Plastic

What do you mean by Endemic Species

What is the Botanical Name of Dog , Cat , Turmeric , Mushroom , Palm

Trending doubts

How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

Summary of the poem Where the Mind is Without Fear class 8 english CBSE

The poet says Beauty is heard in Can you hear beauty class 6 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

What is the past tense of read class 10 english CBSE

The equation xxx + 2 is satisfied when x is equal to class 10 maths CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE