
The sum of integers from 1 to 100 which is not divisible by 3 or 5 is
$
a.{\text{ }}2849 \\
b.{\text{ }}4375 \\
c.{\text{ }}2317 \\
d.{\text{ }}2632 \\
$
Answer
608.7k+ views
Hint: - Sum of numbers which is not divisible by 3 or 5 is = sum of all numbers - sum of numbers which is divisible by 3 - sum of numbers which is divisible by 5 + sum of numbers which is divisible by both 3 and 5
The set of numbers which is divisible by 3 from 1 to 100 is $\left\{ {3,6,9,.................,99} \right\}$
As you see this series form an A.P with its first term$\left( {{a_1} = 3} \right)$, last term $\left( {{a_l} = 99} \right)$and common difference $\left( {d = 6 - 3 = 3} \right)$
Therefore number of terms in this series is
${a_l} = {a_1} + \left( {n - 1} \right)d$Where n is the number of terms.
$
\Rightarrow 99 = 3 + \left( {n - 1} \right)3 \\
\Rightarrow n - 1 = 32 \\
\Rightarrow n = 33 \\
$
So, the sum of this series is
$
{S_n} = \frac{n}{2}\left( {{a_1} + {a_l}} \right) \\
\Rightarrow {S_n} = \frac{{33}}{2}\left( {3 + 99} \right) = \frac{{33}}{2} \times 102 = 1683 \\
$
The set of numbers which is divisible by 5 from 1 to 100 is $\left\{ {5,10,15,.................,100} \right\}$
As you see this series form an A.P with its first term$\left( {{a_1} = 5} \right)$, last term $\left( {{a_l} = 100} \right)$and common difference $\left( {d = 10 - 5 = 5} \right)$
Therefore number of terms in this series is
${a_l} = {a_1} + \left( {n - 1} \right)d$Where n is the number of terms.
$
\Rightarrow 100 = 5 + \left( {n - 1} \right)5 \\
\Rightarrow n - 1 = 19 \\
\Rightarrow n = 20 \\
$
So, the sum of this series is
$
{S_n} = \frac{n}{2}\left( {{a_1} + {a_l}} \right) \\
\Rightarrow {S_n} = \frac{{20}}{2}\left( {5 + 100} \right) = 10 \times 105 = 1050 \\
$
The set of numbers which is divisible by both 3 and 5.
Therefore L.C.M of 3 and 5 is 15
The set of numbers which is divisible by 15 from 1 to 100 is $\left\{ {15,30,.................,90} \right\}$
As you see this series form an A.P with its first term$\left( {{a_1} = 15} \right)$, last term $\left( {{a_l} = 90} \right)$and common difference $\left( {d = 30 - 15 = 15} \right)$
Therefore number of terms in this series is
${a_l} = {a_1} + \left( {n - 1} \right)d$Where n is the number of terms.
$
\Rightarrow 90 = 15 + \left( {n - 1} \right)15 \\
\Rightarrow n - 1 = 5 \\
\Rightarrow n = 6 \\
$
So, the sum of this series is
$
{S_n} = \frac{n}{2}\left( {{a_1} + {a_l}} \right) \\
\Rightarrow {S_n} = \frac{6}{2}\left( {15 + 90} \right) = 3 \times 105 = 315 \\
$
The sum of numbers from 1 to 100.
Total number of terms from 1 to 100 is 100.
$
{S_n} = \frac{n}{2}\left( {{a_1} + {a_l}} \right) \\
\Rightarrow {S_n} = \frac{{100}}{2}\left( {1 + 100} \right) = 50 \times 101 = 5050 \\
$
Therefore Sum of numbers which is not divisible by 3 or 5 is = sum of all numbers – sum of numbers which is divisible by 3 – sum of numbers which is divisible by 5 + sum of numbers which is divisible by both 3 and 5
$ \Rightarrow S = 5050 - 1683 - 1050 + 315 = 2632$
Hence, option (d) is correct.
Note: - In such types of question always remember some of the basic formulas of A.P which is stated above, then calculate the sum of all the series which is divisible by 3 , 5 and both, then using the formula which is stated above we will get the required sum which is divisible by 3 or 5.
The set of numbers which is divisible by 3 from 1 to 100 is $\left\{ {3,6,9,.................,99} \right\}$
As you see this series form an A.P with its first term$\left( {{a_1} = 3} \right)$, last term $\left( {{a_l} = 99} \right)$and common difference $\left( {d = 6 - 3 = 3} \right)$
Therefore number of terms in this series is
${a_l} = {a_1} + \left( {n - 1} \right)d$Where n is the number of terms.
$
\Rightarrow 99 = 3 + \left( {n - 1} \right)3 \\
\Rightarrow n - 1 = 32 \\
\Rightarrow n = 33 \\
$
So, the sum of this series is
$
{S_n} = \frac{n}{2}\left( {{a_1} + {a_l}} \right) \\
\Rightarrow {S_n} = \frac{{33}}{2}\left( {3 + 99} \right) = \frac{{33}}{2} \times 102 = 1683 \\
$
The set of numbers which is divisible by 5 from 1 to 100 is $\left\{ {5,10,15,.................,100} \right\}$
As you see this series form an A.P with its first term$\left( {{a_1} = 5} \right)$, last term $\left( {{a_l} = 100} \right)$and common difference $\left( {d = 10 - 5 = 5} \right)$
Therefore number of terms in this series is
${a_l} = {a_1} + \left( {n - 1} \right)d$Where n is the number of terms.
$
\Rightarrow 100 = 5 + \left( {n - 1} \right)5 \\
\Rightarrow n - 1 = 19 \\
\Rightarrow n = 20 \\
$
So, the sum of this series is
$
{S_n} = \frac{n}{2}\left( {{a_1} + {a_l}} \right) \\
\Rightarrow {S_n} = \frac{{20}}{2}\left( {5 + 100} \right) = 10 \times 105 = 1050 \\
$
The set of numbers which is divisible by both 3 and 5.
Therefore L.C.M of 3 and 5 is 15
The set of numbers which is divisible by 15 from 1 to 100 is $\left\{ {15,30,.................,90} \right\}$
As you see this series form an A.P with its first term$\left( {{a_1} = 15} \right)$, last term $\left( {{a_l} = 90} \right)$and common difference $\left( {d = 30 - 15 = 15} \right)$
Therefore number of terms in this series is
${a_l} = {a_1} + \left( {n - 1} \right)d$Where n is the number of terms.
$
\Rightarrow 90 = 15 + \left( {n - 1} \right)15 \\
\Rightarrow n - 1 = 5 \\
\Rightarrow n = 6 \\
$
So, the sum of this series is
$
{S_n} = \frac{n}{2}\left( {{a_1} + {a_l}} \right) \\
\Rightarrow {S_n} = \frac{6}{2}\left( {15 + 90} \right) = 3 \times 105 = 315 \\
$
The sum of numbers from 1 to 100.
Total number of terms from 1 to 100 is 100.
$
{S_n} = \frac{n}{2}\left( {{a_1} + {a_l}} \right) \\
\Rightarrow {S_n} = \frac{{100}}{2}\left( {1 + 100} \right) = 50 \times 101 = 5050 \\
$
Therefore Sum of numbers which is not divisible by 3 or 5 is = sum of all numbers – sum of numbers which is divisible by 3 – sum of numbers which is divisible by 5 + sum of numbers which is divisible by both 3 and 5
$ \Rightarrow S = 5050 - 1683 - 1050 + 315 = 2632$
Hence, option (d) is correct.
Note: - In such types of question always remember some of the basic formulas of A.P which is stated above, then calculate the sum of all the series which is divisible by 3 , 5 and both, then using the formula which is stated above we will get the required sum which is divisible by 3 or 5.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

