
The sum of first m terms of an A.P. is $4{m^2} - m$. if it's ${n^{th{\text{ }}}}$term is $107$,find the value of n.
Answer
615k+ views
(Hint: Use the formula of sum of first n terms of A.P. and find first term of A.P. with the help of sum of n terms of A.P.)
The sum of terms is given as,
\[{S_m} = 4{m^2} - m{\text{ }}...{\text{(1)}}\]
Let \[{a_n}\] be \[{n^{th}}\] the term of A.P., then we get,
\[{a_1} = {S_1} = 4{(1)^2} - 1 = 4 - 1 = 3\]
Now, we know that,
\[{S_n} = \dfrac{n}{2}(a + {a_n}){\text{ }}...{\text{(2)}}\]
Also, the value of \[{a_n}\] is given as
\[{a_n} = 107\]
Using the equations and, we get,
\[{S_n} = 4{n^2} - n = \dfrac{n}{2}({a_1} + {a_n})\]
\[4n - 1 = \left( {\dfrac{{3 + 107}}{2}} \right)\]
\[4n - 1 = 55\]
\[n = \dfrac{{56}}{4}\]
\[ \Rightarrow n = 14\]
So, the required solution is \[n = 14\].
Note: In order to solve these types of questions, the first term needs to be calculated first so that the formula for calculating the \[{n^{th}}\]term or the sum, can be applied.
The sum of terms is given as,
\[{S_m} = 4{m^2} - m{\text{ }}...{\text{(1)}}\]
Let \[{a_n}\] be \[{n^{th}}\] the term of A.P., then we get,
\[{a_1} = {S_1} = 4{(1)^2} - 1 = 4 - 1 = 3\]
Now, we know that,
\[{S_n} = \dfrac{n}{2}(a + {a_n}){\text{ }}...{\text{(2)}}\]
Also, the value of \[{a_n}\] is given as
\[{a_n} = 107\]
Using the equations and, we get,
\[{S_n} = 4{n^2} - n = \dfrac{n}{2}({a_1} + {a_n})\]
\[4n - 1 = \left( {\dfrac{{3 + 107}}{2}} \right)\]
\[4n - 1 = 55\]
\[n = \dfrac{{56}}{4}\]
\[ \Rightarrow n = 14\]
So, the required solution is \[n = 14\].
Note: In order to solve these types of questions, the first term needs to be calculated first so that the formula for calculating the \[{n^{th}}\]term or the sum, can be applied.
Recently Updated Pages
Which current out of the following flows in the Indian class 10 social science CBSE

The total surface area of a sphere is 452dfrac47cm2 class 10 maths CBSE

Who elects the community government in Belgium A The class 10 social science CBSE

Give an example of Volcanic mountains class 10 social science CBSE

How many different words ending and beginning with-class-10-maths-ICSE

What is psychological realism class 10 english CBSE

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

An example of chemosynthetic bacteria is A E coli B class 11 biology CBSE

10 examples of friction in our daily life

