Answer
Verified
409.5k+ views
Hint: Problems of this type can be easily solved by using the formulas of Arithmetic Progressions. We use the formula of the summation of the terms of an A.P to get an expression and equate it to $187$where we will get the value of the first term of the A.P. Upon doing that we equate the expression of the 17th term to $-13$ which will give us the value of common difference of the A.P, thus we determine the A.P.
Complete step by step answer:
We are given that the sum of first $17$ terms of the A.P is $187$and the ${{17}^{th}}$ term is $-13$ .
We use the formula of summation of A.P as shown below
Sum of $n$ terms of an A.P is $\dfrac{n}{2}\left( a+l \right)$
Here $a$ is the value of first term of the A.P and $l$ is the ${{n}^{th}}$ term of the A.P
We already know that $n=17$ and $l=-13$
Therefore, the expression of the summation becomes $\dfrac{17}{2}\left( a-13 \right)$
We now equate the above expression to the given value of sum i.e., $187$ as shown below
$\dfrac{17}{2}\left( a-13 \right)=187$
$\Rightarrow 17\left( a-13 \right)=187\times 2$
$\Rightarrow 17a-17\times 13=187\times 2$
$\Rightarrow 17a-221=374$
$\Rightarrow 17a=374+221$
$\Rightarrow 17a=595$
$\Rightarrow a=\dfrac{595}{17}$
$\therefore a=35$
Hence, the 1st term of the A.P is $35$
We also know that the formula of the value of ${{n}^{th}}$ term of the A.P is $a+\left( n-1 \right)d$
Here, $d$ is the common difference between two consecutive terms of the A.P
We can equate the above expression to $-13$ by putting $a=35$ and $n=17$ as shown below
$35+\left( 17-1 \right)d=-13$
$\Rightarrow \left( 17-1 \right)d=-13-35$
$\Rightarrow 16d=-48$
$\Rightarrow d=-\dfrac{48}{16}$
$\therefore d=-3$
Hence, the common difference between two consecutive terms of the A.P is $-3$
Therefore, the A.P is \[35,\text{ }32,\text{ }29,\text{ }26,\text{ }23,\text{ }20,\text{ }17,\text{ }14,\text{ }11,\text{ }8,\text{ }5,\text{ }2,\text{ }-1,\text{ }-4,\text{ }-7,\text{ }-10,\text{ }-13\]
Note: While developing the expression of summation of the terms of A.P we could have also used the formula for summation $\dfrac{n}{2}\left\{ 2a+\left( n-1 \right)d \right\}$ but the problem is the solution will become lengthier. This happens due to the fact that we have to solve two equations simultaneously to get the two variables $a$ and $d$ rather than simply solving each of the equations one by one to get the solutions.
Complete step by step answer:
We are given that the sum of first $17$ terms of the A.P is $187$and the ${{17}^{th}}$ term is $-13$ .
We use the formula of summation of A.P as shown below
Sum of $n$ terms of an A.P is $\dfrac{n}{2}\left( a+l \right)$
Here $a$ is the value of first term of the A.P and $l$ is the ${{n}^{th}}$ term of the A.P
We already know that $n=17$ and $l=-13$
Therefore, the expression of the summation becomes $\dfrac{17}{2}\left( a-13 \right)$
We now equate the above expression to the given value of sum i.e., $187$ as shown below
$\dfrac{17}{2}\left( a-13 \right)=187$
$\Rightarrow 17\left( a-13 \right)=187\times 2$
$\Rightarrow 17a-17\times 13=187\times 2$
$\Rightarrow 17a-221=374$
$\Rightarrow 17a=374+221$
$\Rightarrow 17a=595$
$\Rightarrow a=\dfrac{595}{17}$
$\therefore a=35$
Hence, the 1st term of the A.P is $35$
We also know that the formula of the value of ${{n}^{th}}$ term of the A.P is $a+\left( n-1 \right)d$
Here, $d$ is the common difference between two consecutive terms of the A.P
We can equate the above expression to $-13$ by putting $a=35$ and $n=17$ as shown below
$35+\left( 17-1 \right)d=-13$
$\Rightarrow \left( 17-1 \right)d=-13-35$
$\Rightarrow 16d=-48$
$\Rightarrow d=-\dfrac{48}{16}$
$\therefore d=-3$
Hence, the common difference between two consecutive terms of the A.P is $-3$
Therefore, the A.P is \[35,\text{ }32,\text{ }29,\text{ }26,\text{ }23,\text{ }20,\text{ }17,\text{ }14,\text{ }11,\text{ }8,\text{ }5,\text{ }2,\text{ }-1,\text{ }-4,\text{ }-7,\text{ }-10,\text{ }-13\]
Note: While developing the expression of summation of the terms of A.P we could have also used the formula for summation $\dfrac{n}{2}\left\{ 2a+\left( n-1 \right)d \right\}$ but the problem is the solution will become lengthier. This happens due to the fact that we have to solve two equations simultaneously to get the two variables $a$ and $d$ rather than simply solving each of the equations one by one to get the solutions.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths