
The sum of all $x \in \left[ {0,\pi } \right]$ which satisfy the equation $\sin x + \dfrac{1}{2}\cos x = {\sin ^2}\left( {x + \dfrac{\pi }{4}} \right)$is
A. $\dfrac{\pi }{6}$
B. $\dfrac{{5\pi }}{6}$
C. $\pi $
D. $2\pi $
Answer
598.5k+ views
Hint: Use simple trigonometric formulas.
As we know that,
$
\cos 2x = 1 - 2{\sin ^2}x \\
\therefore {\sin ^2}x = \dfrac{{1 - \cos 2x}}{2} \\
$
Given: $\sin x + \dfrac{1}{2}\cos x = {\sin ^2}\left( {x + \dfrac{\pi }{4}} \right)$
Substituting the value of \[\sin x\], we get
$
\Rightarrow \sin x + \dfrac{1}{2}\cos x = \dfrac{1}{2}\left( {1 - \cos \left( {2x + \dfrac{\pi }{2}} \right)} \right) \\
\Rightarrow \sin x + \dfrac{1}{2}\cos x = \dfrac{1}{2}\left( {1 + \sin 2x} \right){\text{ }}\left( {\because \cos \left( {\dfrac{\pi }{2} + \theta } \right) = - \sin \theta } \right) \\
\Rightarrow \dfrac{{2\sin x + \cos x}}{2} = \dfrac{{1 + \sin 2x}}{2} \\
\Rightarrow 2\sin x + \cos x = 1 + \sin 2x \\
$
Now, putting $\sin 2x = 2\sin x\cos x$ in above equation, we get
$
\Rightarrow 2\sin x + \cos x = 1 + 2\sin x\cos x \\
\Rightarrow 2\sin x\cos x - 2\sin x - \cos x + 1 = 0 \\
$
Now taking $2\sin x$ common, we get
$
\Rightarrow 2\sin x\left( {\cos x - 1} \right) - 1\left( {\cos x - 1} \right) = 0 \\
\Rightarrow \left( {2\sin x - 1} \right)\left( {\cos x - 1} \right) = 0 \\
$
Either $\left( {2\sin x - 1} \right) = 0$ or $\left( {\cos x - 1} \right) = 0$.
If we take $\left( {2\sin x - 1} \right) = 0$, then
$
\Rightarrow \left( {2\sin x - 1} \right) = 0 \\
\Rightarrow 2\sin x = 1 \\
\Rightarrow \sin x = \dfrac{1}{2} \\
\Rightarrow x = \dfrac{\pi }{6},\dfrac{{5\pi }}{6} \\
$
And if we take $\left( {\cos x - 1} \right) = 0$, then
$
\Rightarrow \left( {\cos x - 1} \right) = 0 \\
\Rightarrow \cos x = 1 \\
\Rightarrow x = {0^ \circ } \\
$
Now, $x \in \left[ {0,\pi } \right]$is given.
So, the sum of all $x$ is.
\[
x = \dfrac{\pi }{6} + \dfrac{{5\pi }}{6} + 0 \\
x = \dfrac{{6\pi }}{6} \\
x = \pi \\
\]
Hence, the correct option is C.
Note: Whenever there are trigonometric equations with range given for the angle, always try to solve them by using trigonometric formulas and identities. Also, try to remember the values of basic trigonometric functions with simple angles.
As we know that,
$
\cos 2x = 1 - 2{\sin ^2}x \\
\therefore {\sin ^2}x = \dfrac{{1 - \cos 2x}}{2} \\
$
Given: $\sin x + \dfrac{1}{2}\cos x = {\sin ^2}\left( {x + \dfrac{\pi }{4}} \right)$
Substituting the value of \[\sin x\], we get
$
\Rightarrow \sin x + \dfrac{1}{2}\cos x = \dfrac{1}{2}\left( {1 - \cos \left( {2x + \dfrac{\pi }{2}} \right)} \right) \\
\Rightarrow \sin x + \dfrac{1}{2}\cos x = \dfrac{1}{2}\left( {1 + \sin 2x} \right){\text{ }}\left( {\because \cos \left( {\dfrac{\pi }{2} + \theta } \right) = - \sin \theta } \right) \\
\Rightarrow \dfrac{{2\sin x + \cos x}}{2} = \dfrac{{1 + \sin 2x}}{2} \\
\Rightarrow 2\sin x + \cos x = 1 + \sin 2x \\
$
Now, putting $\sin 2x = 2\sin x\cos x$ in above equation, we get
$
\Rightarrow 2\sin x + \cos x = 1 + 2\sin x\cos x \\
\Rightarrow 2\sin x\cos x - 2\sin x - \cos x + 1 = 0 \\
$
Now taking $2\sin x$ common, we get
$
\Rightarrow 2\sin x\left( {\cos x - 1} \right) - 1\left( {\cos x - 1} \right) = 0 \\
\Rightarrow \left( {2\sin x - 1} \right)\left( {\cos x - 1} \right) = 0 \\
$
Either $\left( {2\sin x - 1} \right) = 0$ or $\left( {\cos x - 1} \right) = 0$.
If we take $\left( {2\sin x - 1} \right) = 0$, then
$
\Rightarrow \left( {2\sin x - 1} \right) = 0 \\
\Rightarrow 2\sin x = 1 \\
\Rightarrow \sin x = \dfrac{1}{2} \\
\Rightarrow x = \dfrac{\pi }{6},\dfrac{{5\pi }}{6} \\
$
And if we take $\left( {\cos x - 1} \right) = 0$, then
$
\Rightarrow \left( {\cos x - 1} \right) = 0 \\
\Rightarrow \cos x = 1 \\
\Rightarrow x = {0^ \circ } \\
$
Now, $x \in \left[ {0,\pi } \right]$is given.
So, the sum of all $x$ is.
\[
x = \dfrac{\pi }{6} + \dfrac{{5\pi }}{6} + 0 \\
x = \dfrac{{6\pi }}{6} \\
x = \pi \\
\]
Hence, the correct option is C.
Note: Whenever there are trigonometric equations with range given for the angle, always try to solve them by using trigonometric formulas and identities. Also, try to remember the values of basic trigonometric functions with simple angles.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

How many 5 digit telephone numbers can be constructed class 11 maths CBSE

Draw a well labelled diagram of reflex arc and explain class 11 biology CBSE

What is the difference between noise and music Can class 11 physics CBSE

Trending doubts
In what year Guru Nanak Dev ji was born A15 April 1469 class 11 social science CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

What is the z value for a 90 95 and 99 percent confidence class 11 maths CBSE

Draw a diagram showing the external features of fish class 11 biology CBSE

