# The sum of all $x \in \left[ {0,\pi } \right]$ which satisfy the equation $\sin x + \dfrac{1}{2}\cos x = {\sin ^2}\left( {x + \dfrac{\pi }{4}} \right)$is

A. $\dfrac{\pi }{6}$

B. $\dfrac{{5\pi }}{6}$

C. $\pi $

D. $2\pi $

Answer

Verified

383.7k+ views

Hint: Use simple trigonometric formulas.

As we know that,

$

\cos 2x = 1 - 2{\sin ^2}x \\

\therefore {\sin ^2}x = \dfrac{{1 - \cos 2x}}{2} \\

$

Given: $\sin x + \dfrac{1}{2}\cos x = {\sin ^2}\left( {x + \dfrac{\pi }{4}} \right)$

Substituting the value of \[\sin x\], we get

$

\Rightarrow \sin x + \dfrac{1}{2}\cos x = \dfrac{1}{2}\left( {1 - \cos \left( {2x + \dfrac{\pi }{2}} \right)} \right) \\

\Rightarrow \sin x + \dfrac{1}{2}\cos x = \dfrac{1}{2}\left( {1 + \sin 2x} \right){\text{ }}\left( {\because \cos \left( {\dfrac{\pi }{2} + \theta } \right) = - \sin \theta } \right) \\

\Rightarrow \dfrac{{2\sin x + \cos x}}{2} = \dfrac{{1 + \sin 2x}}{2} \\

\Rightarrow 2\sin x + \cos x = 1 + \sin 2x \\

$

Now, putting $\sin 2x = 2\sin x\cos x$ in above equation, we get

$

\Rightarrow 2\sin x + \cos x = 1 + 2\sin x\cos x \\

\Rightarrow 2\sin x\cos x - 2\sin x - \cos x + 1 = 0 \\

$

Now taking $2\sin x$ common, we get

$

\Rightarrow 2\sin x\left( {\cos x - 1} \right) - 1\left( {\cos x - 1} \right) = 0 \\

\Rightarrow \left( {2\sin x - 1} \right)\left( {\cos x - 1} \right) = 0 \\

$

Either $\left( {2\sin x - 1} \right) = 0$ or $\left( {\cos x - 1} \right) = 0$.

If we take $\left( {2\sin x - 1} \right) = 0$, then

$

\Rightarrow \left( {2\sin x - 1} \right) = 0 \\

\Rightarrow 2\sin x = 1 \\

\Rightarrow \sin x = \dfrac{1}{2} \\

\Rightarrow x = \dfrac{\pi }{6},\dfrac{{5\pi }}{6} \\

$

And if we take $\left( {\cos x - 1} \right) = 0$, then

$

\Rightarrow \left( {\cos x - 1} \right) = 0 \\

\Rightarrow \cos x = 1 \\

\Rightarrow x = {0^ \circ } \\

$

Now, $x \in \left[ {0,\pi } \right]$is given.

So, the sum of all $x$ is.

\[

x = \dfrac{\pi }{6} + \dfrac{{5\pi }}{6} + 0 \\

x = \dfrac{{6\pi }}{6} \\

x = \pi \\

\]

Hence, the correct option is C.

Note: Whenever there are trigonometric equations with range given for the angle, always try to solve them by using trigonometric formulas and identities. Also, try to remember the values of basic trigonometric functions with simple angles.

As we know that,

$

\cos 2x = 1 - 2{\sin ^2}x \\

\therefore {\sin ^2}x = \dfrac{{1 - \cos 2x}}{2} \\

$

Given: $\sin x + \dfrac{1}{2}\cos x = {\sin ^2}\left( {x + \dfrac{\pi }{4}} \right)$

Substituting the value of \[\sin x\], we get

$

\Rightarrow \sin x + \dfrac{1}{2}\cos x = \dfrac{1}{2}\left( {1 - \cos \left( {2x + \dfrac{\pi }{2}} \right)} \right) \\

\Rightarrow \sin x + \dfrac{1}{2}\cos x = \dfrac{1}{2}\left( {1 + \sin 2x} \right){\text{ }}\left( {\because \cos \left( {\dfrac{\pi }{2} + \theta } \right) = - \sin \theta } \right) \\

\Rightarrow \dfrac{{2\sin x + \cos x}}{2} = \dfrac{{1 + \sin 2x}}{2} \\

\Rightarrow 2\sin x + \cos x = 1 + \sin 2x \\

$

Now, putting $\sin 2x = 2\sin x\cos x$ in above equation, we get

$

\Rightarrow 2\sin x + \cos x = 1 + 2\sin x\cos x \\

\Rightarrow 2\sin x\cos x - 2\sin x - \cos x + 1 = 0 \\

$

Now taking $2\sin x$ common, we get

$

\Rightarrow 2\sin x\left( {\cos x - 1} \right) - 1\left( {\cos x - 1} \right) = 0 \\

\Rightarrow \left( {2\sin x - 1} \right)\left( {\cos x - 1} \right) = 0 \\

$

Either $\left( {2\sin x - 1} \right) = 0$ or $\left( {\cos x - 1} \right) = 0$.

If we take $\left( {2\sin x - 1} \right) = 0$, then

$

\Rightarrow \left( {2\sin x - 1} \right) = 0 \\

\Rightarrow 2\sin x = 1 \\

\Rightarrow \sin x = \dfrac{1}{2} \\

\Rightarrow x = \dfrac{\pi }{6},\dfrac{{5\pi }}{6} \\

$

And if we take $\left( {\cos x - 1} \right) = 0$, then

$

\Rightarrow \left( {\cos x - 1} \right) = 0 \\

\Rightarrow \cos x = 1 \\

\Rightarrow x = {0^ \circ } \\

$

Now, $x \in \left[ {0,\pi } \right]$is given.

So, the sum of all $x$ is.

\[

x = \dfrac{\pi }{6} + \dfrac{{5\pi }}{6} + 0 \\

x = \dfrac{{6\pi }}{6} \\

x = \pi \\

\]

Hence, the correct option is C.

Note: Whenever there are trigonometric equations with range given for the angle, always try to solve them by using trigonometric formulas and identities. Also, try to remember the values of basic trigonometric functions with simple angles.

Recently Updated Pages

Which of the following would not be a valid reason class 11 biology CBSE

What is meant by monosporic development of female class 11 biology CBSE

Draw labelled diagram of the following i Gram seed class 11 biology CBSE

Explain with the suitable examples the different types class 11 biology CBSE

How is pinnately compound leaf different from palmately class 11 biology CBSE

Match the following Column I Column I A Chlamydomonas class 11 biology CBSE

Trending doubts

State Gay Lusaaccs law of gaseous volume class 11 chemistry CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

What is BLO What is the full form of BLO class 8 social science CBSE

What is pollution? How many types of pollution? Define it

Change the following sentences into negative and interrogative class 10 english CBSE

Which is the tallest animal on the earth A Giraffes class 9 social science CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

How fast is 60 miles per hour in kilometres per ho class 10 maths CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE