
The sum of all $x \in \left[ {0,\pi } \right]$ which satisfy the equation $\sin x + \dfrac{1}{2}\cos x = {\sin ^2}\left( {x + \dfrac{\pi }{4}} \right)$is
A. $\dfrac{\pi }{6}$
B. $\dfrac{{5\pi }}{6}$
C. $\pi $
D. $2\pi $
Answer
605.7k+ views
Hint: Use simple trigonometric formulas.
As we know that,
$
\cos 2x = 1 - 2{\sin ^2}x \\
\therefore {\sin ^2}x = \dfrac{{1 - \cos 2x}}{2} \\
$
Given: $\sin x + \dfrac{1}{2}\cos x = {\sin ^2}\left( {x + \dfrac{\pi }{4}} \right)$
Substituting the value of \[\sin x\], we get
$
\Rightarrow \sin x + \dfrac{1}{2}\cos x = \dfrac{1}{2}\left( {1 - \cos \left( {2x + \dfrac{\pi }{2}} \right)} \right) \\
\Rightarrow \sin x + \dfrac{1}{2}\cos x = \dfrac{1}{2}\left( {1 + \sin 2x} \right){\text{ }}\left( {\because \cos \left( {\dfrac{\pi }{2} + \theta } \right) = - \sin \theta } \right) \\
\Rightarrow \dfrac{{2\sin x + \cos x}}{2} = \dfrac{{1 + \sin 2x}}{2} \\
\Rightarrow 2\sin x + \cos x = 1 + \sin 2x \\
$
Now, putting $\sin 2x = 2\sin x\cos x$ in above equation, we get
$
\Rightarrow 2\sin x + \cos x = 1 + 2\sin x\cos x \\
\Rightarrow 2\sin x\cos x - 2\sin x - \cos x + 1 = 0 \\
$
Now taking $2\sin x$ common, we get
$
\Rightarrow 2\sin x\left( {\cos x - 1} \right) - 1\left( {\cos x - 1} \right) = 0 \\
\Rightarrow \left( {2\sin x - 1} \right)\left( {\cos x - 1} \right) = 0 \\
$
Either $\left( {2\sin x - 1} \right) = 0$ or $\left( {\cos x - 1} \right) = 0$.
If we take $\left( {2\sin x - 1} \right) = 0$, then
$
\Rightarrow \left( {2\sin x - 1} \right) = 0 \\
\Rightarrow 2\sin x = 1 \\
\Rightarrow \sin x = \dfrac{1}{2} \\
\Rightarrow x = \dfrac{\pi }{6},\dfrac{{5\pi }}{6} \\
$
And if we take $\left( {\cos x - 1} \right) = 0$, then
$
\Rightarrow \left( {\cos x - 1} \right) = 0 \\
\Rightarrow \cos x = 1 \\
\Rightarrow x = {0^ \circ } \\
$
Now, $x \in \left[ {0,\pi } \right]$is given.
So, the sum of all $x$ is.
\[
x = \dfrac{\pi }{6} + \dfrac{{5\pi }}{6} + 0 \\
x = \dfrac{{6\pi }}{6} \\
x = \pi \\
\]
Hence, the correct option is C.
Note: Whenever there are trigonometric equations with range given for the angle, always try to solve them by using trigonometric formulas and identities. Also, try to remember the values of basic trigonometric functions with simple angles.
As we know that,
$
\cos 2x = 1 - 2{\sin ^2}x \\
\therefore {\sin ^2}x = \dfrac{{1 - \cos 2x}}{2} \\
$
Given: $\sin x + \dfrac{1}{2}\cos x = {\sin ^2}\left( {x + \dfrac{\pi }{4}} \right)$
Substituting the value of \[\sin x\], we get
$
\Rightarrow \sin x + \dfrac{1}{2}\cos x = \dfrac{1}{2}\left( {1 - \cos \left( {2x + \dfrac{\pi }{2}} \right)} \right) \\
\Rightarrow \sin x + \dfrac{1}{2}\cos x = \dfrac{1}{2}\left( {1 + \sin 2x} \right){\text{ }}\left( {\because \cos \left( {\dfrac{\pi }{2} + \theta } \right) = - \sin \theta } \right) \\
\Rightarrow \dfrac{{2\sin x + \cos x}}{2} = \dfrac{{1 + \sin 2x}}{2} \\
\Rightarrow 2\sin x + \cos x = 1 + \sin 2x \\
$
Now, putting $\sin 2x = 2\sin x\cos x$ in above equation, we get
$
\Rightarrow 2\sin x + \cos x = 1 + 2\sin x\cos x \\
\Rightarrow 2\sin x\cos x - 2\sin x - \cos x + 1 = 0 \\
$
Now taking $2\sin x$ common, we get
$
\Rightarrow 2\sin x\left( {\cos x - 1} \right) - 1\left( {\cos x - 1} \right) = 0 \\
\Rightarrow \left( {2\sin x - 1} \right)\left( {\cos x - 1} \right) = 0 \\
$
Either $\left( {2\sin x - 1} \right) = 0$ or $\left( {\cos x - 1} \right) = 0$.
If we take $\left( {2\sin x - 1} \right) = 0$, then
$
\Rightarrow \left( {2\sin x - 1} \right) = 0 \\
\Rightarrow 2\sin x = 1 \\
\Rightarrow \sin x = \dfrac{1}{2} \\
\Rightarrow x = \dfrac{\pi }{6},\dfrac{{5\pi }}{6} \\
$
And if we take $\left( {\cos x - 1} \right) = 0$, then
$
\Rightarrow \left( {\cos x - 1} \right) = 0 \\
\Rightarrow \cos x = 1 \\
\Rightarrow x = {0^ \circ } \\
$
Now, $x \in \left[ {0,\pi } \right]$is given.
So, the sum of all $x$ is.
\[
x = \dfrac{\pi }{6} + \dfrac{{5\pi }}{6} + 0 \\
x = \dfrac{{6\pi }}{6} \\
x = \pi \\
\]
Hence, the correct option is C.
Note: Whenever there are trigonometric equations with range given for the angle, always try to solve them by using trigonometric formulas and identities. Also, try to remember the values of basic trigonometric functions with simple angles.
Recently Updated Pages
Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

