# The sum of all $x \in \left[ {0,\pi } \right]$ which satisfy the equation $\sin x + \dfrac{1}{2}\cos x = {\sin ^2}\left( {x + \dfrac{\pi }{4}} \right)$is

A. $\dfrac{\pi }{6}$

B. $\dfrac{{5\pi }}{6}$

C. $\pi $

D. $2\pi $

Last updated date: 28th Mar 2023

•

Total views: 311.1k

•

Views today: 4.87k

Answer

Verified

311.1k+ views

Hint: Use simple trigonometric formulas.

As we know that,

$

\cos 2x = 1 - 2{\sin ^2}x \\

\therefore {\sin ^2}x = \dfrac{{1 - \cos 2x}}{2} \\

$

Given: $\sin x + \dfrac{1}{2}\cos x = {\sin ^2}\left( {x + \dfrac{\pi }{4}} \right)$

Substituting the value of \[\sin x\], we get

$

\Rightarrow \sin x + \dfrac{1}{2}\cos x = \dfrac{1}{2}\left( {1 - \cos \left( {2x + \dfrac{\pi }{2}} \right)} \right) \\

\Rightarrow \sin x + \dfrac{1}{2}\cos x = \dfrac{1}{2}\left( {1 + \sin 2x} \right){\text{ }}\left( {\because \cos \left( {\dfrac{\pi }{2} + \theta } \right) = - \sin \theta } \right) \\

\Rightarrow \dfrac{{2\sin x + \cos x}}{2} = \dfrac{{1 + \sin 2x}}{2} \\

\Rightarrow 2\sin x + \cos x = 1 + \sin 2x \\

$

Now, putting $\sin 2x = 2\sin x\cos x$ in above equation, we get

$

\Rightarrow 2\sin x + \cos x = 1 + 2\sin x\cos x \\

\Rightarrow 2\sin x\cos x - 2\sin x - \cos x + 1 = 0 \\

$

Now taking $2\sin x$ common, we get

$

\Rightarrow 2\sin x\left( {\cos x - 1} \right) - 1\left( {\cos x - 1} \right) = 0 \\

\Rightarrow \left( {2\sin x - 1} \right)\left( {\cos x - 1} \right) = 0 \\

$

Either $\left( {2\sin x - 1} \right) = 0$ or $\left( {\cos x - 1} \right) = 0$.

If we take $\left( {2\sin x - 1} \right) = 0$, then

$

\Rightarrow \left( {2\sin x - 1} \right) = 0 \\

\Rightarrow 2\sin x = 1 \\

\Rightarrow \sin x = \dfrac{1}{2} \\

\Rightarrow x = \dfrac{\pi }{6},\dfrac{{5\pi }}{6} \\

$

And if we take $\left( {\cos x - 1} \right) = 0$, then

$

\Rightarrow \left( {\cos x - 1} \right) = 0 \\

\Rightarrow \cos x = 1 \\

\Rightarrow x = {0^ \circ } \\

$

Now, $x \in \left[ {0,\pi } \right]$is given.

So, the sum of all $x$ is.

\[

x = \dfrac{\pi }{6} + \dfrac{{5\pi }}{6} + 0 \\

x = \dfrac{{6\pi }}{6} \\

x = \pi \\

\]

Hence, the correct option is C.

Note: Whenever there are trigonometric equations with range given for the angle, always try to solve them by using trigonometric formulas and identities. Also, try to remember the values of basic trigonometric functions with simple angles.

As we know that,

$

\cos 2x = 1 - 2{\sin ^2}x \\

\therefore {\sin ^2}x = \dfrac{{1 - \cos 2x}}{2} \\

$

Given: $\sin x + \dfrac{1}{2}\cos x = {\sin ^2}\left( {x + \dfrac{\pi }{4}} \right)$

Substituting the value of \[\sin x\], we get

$

\Rightarrow \sin x + \dfrac{1}{2}\cos x = \dfrac{1}{2}\left( {1 - \cos \left( {2x + \dfrac{\pi }{2}} \right)} \right) \\

\Rightarrow \sin x + \dfrac{1}{2}\cos x = \dfrac{1}{2}\left( {1 + \sin 2x} \right){\text{ }}\left( {\because \cos \left( {\dfrac{\pi }{2} + \theta } \right) = - \sin \theta } \right) \\

\Rightarrow \dfrac{{2\sin x + \cos x}}{2} = \dfrac{{1 + \sin 2x}}{2} \\

\Rightarrow 2\sin x + \cos x = 1 + \sin 2x \\

$

Now, putting $\sin 2x = 2\sin x\cos x$ in above equation, we get

$

\Rightarrow 2\sin x + \cos x = 1 + 2\sin x\cos x \\

\Rightarrow 2\sin x\cos x - 2\sin x - \cos x + 1 = 0 \\

$

Now taking $2\sin x$ common, we get

$

\Rightarrow 2\sin x\left( {\cos x - 1} \right) - 1\left( {\cos x - 1} \right) = 0 \\

\Rightarrow \left( {2\sin x - 1} \right)\left( {\cos x - 1} \right) = 0 \\

$

Either $\left( {2\sin x - 1} \right) = 0$ or $\left( {\cos x - 1} \right) = 0$.

If we take $\left( {2\sin x - 1} \right) = 0$, then

$

\Rightarrow \left( {2\sin x - 1} \right) = 0 \\

\Rightarrow 2\sin x = 1 \\

\Rightarrow \sin x = \dfrac{1}{2} \\

\Rightarrow x = \dfrac{\pi }{6},\dfrac{{5\pi }}{6} \\

$

And if we take $\left( {\cos x - 1} \right) = 0$, then

$

\Rightarrow \left( {\cos x - 1} \right) = 0 \\

\Rightarrow \cos x = 1 \\

\Rightarrow x = {0^ \circ } \\

$

Now, $x \in \left[ {0,\pi } \right]$is given.

So, the sum of all $x$ is.

\[

x = \dfrac{\pi }{6} + \dfrac{{5\pi }}{6} + 0 \\

x = \dfrac{{6\pi }}{6} \\

x = \pi \\

\]

Hence, the correct option is C.

Note: Whenever there are trigonometric equations with range given for the angle, always try to solve them by using trigonometric formulas and identities. Also, try to remember the values of basic trigonometric functions with simple angles.

Recently Updated Pages

Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE