Answer
Verified
448.2k+ views
Hint: In a transverse wave, the particles of the medium vibrate along the direction perpendicular to the motion of the wave. The speed of the wave on the string is dependent on the tension in the string and mass per unit length of the given string. The exact dependence can be easily found using dimensional analysis.
Formula used: speed of the wave
$\sqrt{\dfrac{T}{\mu }}$
Complete step-by-step solution:
The speed of the transverse wave on a stretched string will be dependent on the tension in the string and on the mass per unit length of the string. We will use dimensional analysis to find the exact dependence and will get the answer to the given question. Dimensions of tension will be the same as Force and dimensions of μ i.e. mass per unit length will be of mass divided by length.
$\begin{align}
& v\propto {{T}^{a}}{{\mu }^{b}} \\
& [L{{T}^{-1}}]={{[ML{{T}^{-2}}]}^{a}}{{[M{{L}^{-1}}]}^{b}}=[{{M}^{a+b}}{{L}^{a-b}}{{T}^{-2a}}] \\
\end{align}$
We get the following relations from the expression above
$a+b = 0$
$a-b = 1$
$-2a = -1$
When we solve them we get a = $\dfrac{1}{2}$ and b = \[-\dfrac{1}{2}\]
So, it can be seen that v is proportional to the square root of the tension. Hence, the correct option is B, i.e. directly proportional to the square root of the tension.
Note: We can also find the exact relation using other rigorous mathematical methods, but that will be very tedious and time-consuming so it is advised to stick to dimensional analysis as it is easy and also gets us the desired result and the correct solution with minimal effort.
Formula used: speed of the wave
$\sqrt{\dfrac{T}{\mu }}$
Complete step-by-step solution:
The speed of the transverse wave on a stretched string will be dependent on the tension in the string and on the mass per unit length of the string. We will use dimensional analysis to find the exact dependence and will get the answer to the given question. Dimensions of tension will be the same as Force and dimensions of μ i.e. mass per unit length will be of mass divided by length.
$\begin{align}
& v\propto {{T}^{a}}{{\mu }^{b}} \\
& [L{{T}^{-1}}]={{[ML{{T}^{-2}}]}^{a}}{{[M{{L}^{-1}}]}^{b}}=[{{M}^{a+b}}{{L}^{a-b}}{{T}^{-2a}}] \\
\end{align}$
We get the following relations from the expression above
$a+b = 0$
$a-b = 1$
$-2a = -1$
When we solve them we get a = $\dfrac{1}{2}$ and b = \[-\dfrac{1}{2}\]
So, it can be seen that v is proportional to the square root of the tension. Hence, the correct option is B, i.e. directly proportional to the square root of the tension.
Note: We can also find the exact relation using other rigorous mathematical methods, but that will be very tedious and time-consuming so it is advised to stick to dimensional analysis as it is easy and also gets us the desired result and the correct solution with minimal effort.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE