Answer
Verified
491.1k+ views
Hint – In this question we have to find the solution of the given equation, use trigonometric identities like $\sin C + \sin D = 2\sin \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right)$ to simplify for the value of x, but keep in mind that the solution is asked to be found only for the interval of \[0 \leqslant x \leqslant 2\pi \].
Complete step-by-step answer:
Given equation is
$\sin x + 3\sin 2x + \sin 3x = \cos x + 3\cos 2x + \cos 3x$
$ \Rightarrow \sin x + \sin 3x + 3\sin 2x = \cos x + \cos 3x + 3\cos 2x$
We have to find out the solution of this equation in the interval\[0 \leqslant x \leqslant 2\pi \].
Now as we know
$
\sin C + \sin D = 2\sin \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right) \\
\cos C + \cos D = 2\cos \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right) \\
$
So, use this property in the above equation we have,
$ \Rightarrow \sin x + \sin 3x + 3\sin 2x = \cos x + \cos 3x + 3\cos 2x$
$ \Rightarrow 2\sin \left( {\dfrac{{x + 3x}}{2}} \right)\cos \left( {\dfrac{{x - 3x}}{2}} \right) + 3\sin 2x = 2\cos \left( {\dfrac{{x + 3x}}{2}} \right)\cos \left( {\dfrac{{x - 3x}}{2}} \right) + 3\cos 2x$
Now simplify the above equation we have,
$ \Rightarrow 2\sin 2x\cos x + 3\sin 2x = 2\cos 2x\cos x + 3\cos 2x$ $\left[ {\because \cos \left( { - \theta } \right) = \cos \theta } \right]$
Now take common the common terms we have,
$ \Rightarrow \sin 2x\left( {2\cos x + 3} \right) = \cos 2x\left( {2\cos x + 3} \right)$
$ \Rightarrow \left( {2\cos x + 3} \right)\left( {\sin 2x - \cos 2x} \right) = 0$………………. (1)
$ \Rightarrow 2\cos x + 3 = 0$
$ \Rightarrow \cos x = \dfrac{{ - 3}}{2}$ (Which is not possible as the value of cosine is always lie between -1 to 1)
Again from equation (1) we have,
$ \Rightarrow \left( {\sin 2x - \cos 2x} \right) = 0$
$ \Rightarrow \sin 2x = \cos 2x$
$ \Rightarrow \dfrac{{\sin 2x}}{{\cos 2x}} = 1$
$ \Rightarrow \tan 2x = 1 = \tan \left( {n\pi + \dfrac{\pi }{4}} \right)$ (General solution where n = 0, 1, 2, 3, …………………. )
So on comparing
$ \Rightarrow 2x = n\pi + \dfrac{\pi }{4}$
$ \Rightarrow x = n\dfrac{\pi }{2} + \dfrac{\pi }{8}$
Now, we have to find out the value of x in the interval$0 \leqslant x \leqslant 2\pi $.
For n = 0
$ \Rightarrow x = \dfrac{\pi }{8}$.
For n = 1
$ \Rightarrow x = \dfrac{\pi }{2} + \dfrac{\pi }{8} = \dfrac{{5\pi }}{8}$
For n = 2
$ \Rightarrow x = 2\dfrac{\pi }{2} + \dfrac{\pi }{8} = \dfrac{{9\pi }}{8}$
For n = 3
$ \Rightarrow x = 3\dfrac{\pi }{2} + \dfrac{\pi }{8} = \dfrac{{13\pi }}{8}$
For n = 4
$ \Rightarrow x = 4\dfrac{\pi }{2} + \dfrac{\pi }{8} = \dfrac{{17\pi }}{8} > 2\pi $ (So this solution is not considered)
Hence the required solution is $x = \dfrac{\pi }{8},\dfrac{{5\pi }}{8},\dfrac{{9\pi }}{8},\dfrac{{13\pi }}{8}$
Hence option (b) is correct.
Note: Whenever we face such types of problems the key concept is firstly to reach to the value of x but application of various trigonometric and algebraic identities. As the trigonometric functions involved are mostly periodic in nature therefore the solution also varies in different intervals so we need to keep in mind about the interval in which the solution is being asked.
Complete step-by-step answer:
Given equation is
$\sin x + 3\sin 2x + \sin 3x = \cos x + 3\cos 2x + \cos 3x$
$ \Rightarrow \sin x + \sin 3x + 3\sin 2x = \cos x + \cos 3x + 3\cos 2x$
We have to find out the solution of this equation in the interval\[0 \leqslant x \leqslant 2\pi \].
Now as we know
$
\sin C + \sin D = 2\sin \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right) \\
\cos C + \cos D = 2\cos \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right) \\
$
So, use this property in the above equation we have,
$ \Rightarrow \sin x + \sin 3x + 3\sin 2x = \cos x + \cos 3x + 3\cos 2x$
$ \Rightarrow 2\sin \left( {\dfrac{{x + 3x}}{2}} \right)\cos \left( {\dfrac{{x - 3x}}{2}} \right) + 3\sin 2x = 2\cos \left( {\dfrac{{x + 3x}}{2}} \right)\cos \left( {\dfrac{{x - 3x}}{2}} \right) + 3\cos 2x$
Now simplify the above equation we have,
$ \Rightarrow 2\sin 2x\cos x + 3\sin 2x = 2\cos 2x\cos x + 3\cos 2x$ $\left[ {\because \cos \left( { - \theta } \right) = \cos \theta } \right]$
Now take common the common terms we have,
$ \Rightarrow \sin 2x\left( {2\cos x + 3} \right) = \cos 2x\left( {2\cos x + 3} \right)$
$ \Rightarrow \left( {2\cos x + 3} \right)\left( {\sin 2x - \cos 2x} \right) = 0$………………. (1)
$ \Rightarrow 2\cos x + 3 = 0$
$ \Rightarrow \cos x = \dfrac{{ - 3}}{2}$ (Which is not possible as the value of cosine is always lie between -1 to 1)
Again from equation (1) we have,
$ \Rightarrow \left( {\sin 2x - \cos 2x} \right) = 0$
$ \Rightarrow \sin 2x = \cos 2x$
$ \Rightarrow \dfrac{{\sin 2x}}{{\cos 2x}} = 1$
$ \Rightarrow \tan 2x = 1 = \tan \left( {n\pi + \dfrac{\pi }{4}} \right)$ (General solution where n = 0, 1, 2, 3, …………………. )
So on comparing
$ \Rightarrow 2x = n\pi + \dfrac{\pi }{4}$
$ \Rightarrow x = n\dfrac{\pi }{2} + \dfrac{\pi }{8}$
Now, we have to find out the value of x in the interval$0 \leqslant x \leqslant 2\pi $.
For n = 0
$ \Rightarrow x = \dfrac{\pi }{8}$.
For n = 1
$ \Rightarrow x = \dfrac{\pi }{2} + \dfrac{\pi }{8} = \dfrac{{5\pi }}{8}$
For n = 2
$ \Rightarrow x = 2\dfrac{\pi }{2} + \dfrac{\pi }{8} = \dfrac{{9\pi }}{8}$
For n = 3
$ \Rightarrow x = 3\dfrac{\pi }{2} + \dfrac{\pi }{8} = \dfrac{{13\pi }}{8}$
For n = 4
$ \Rightarrow x = 4\dfrac{\pi }{2} + \dfrac{\pi }{8} = \dfrac{{17\pi }}{8} > 2\pi $ (So this solution is not considered)
Hence the required solution is $x = \dfrac{\pi }{8},\dfrac{{5\pi }}{8},\dfrac{{9\pi }}{8},\dfrac{{13\pi }}{8}$
Hence option (b) is correct.
Note: Whenever we face such types of problems the key concept is firstly to reach to the value of x but application of various trigonometric and algebraic identities. As the trigonometric functions involved are mostly periodic in nature therefore the solution also varies in different intervals so we need to keep in mind about the interval in which the solution is being asked.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE