
The solution of the equation $\sin x + 3\sin 2x + \sin 3x = \cos x + 3\cos 2x + \cos 3x$ in the interval $0 \leqslant x \leqslant 2\pi $ are
$
(a){\text{ }}\dfrac{\pi }{3},\dfrac{{5\pi }}{8},\dfrac{{2\pi }}{3} \\
(b){\text{ }}\dfrac{\pi }{8},\dfrac{{5\pi }}{8},\dfrac{{9\pi }}{8},\dfrac{{13\pi }}{8} \\
(c){\text{ }}\dfrac{{4\pi }}{3},\dfrac{{9\pi }}{3},\dfrac{{2\pi }}{3},\dfrac{{13\pi }}{8} \\
(d){\text{ }}\dfrac{\pi }{8},\dfrac{{5\pi }}{8},\dfrac{{9\pi }}{3},\dfrac{{4\pi }}{3} \\
$
Answer
604.2k+ views
Hint – In this question we have to find the solution of the given equation, use trigonometric identities like $\sin C + \sin D = 2\sin \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right)$ to simplify for the value of x, but keep in mind that the solution is asked to be found only for the interval of \[0 \leqslant x \leqslant 2\pi \].
Complete step-by-step answer:
Given equation is
$\sin x + 3\sin 2x + \sin 3x = \cos x + 3\cos 2x + \cos 3x$
$ \Rightarrow \sin x + \sin 3x + 3\sin 2x = \cos x + \cos 3x + 3\cos 2x$
We have to find out the solution of this equation in the interval\[0 \leqslant x \leqslant 2\pi \].
Now as we know
$
\sin C + \sin D = 2\sin \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right) \\
\cos C + \cos D = 2\cos \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right) \\
$
So, use this property in the above equation we have,
$ \Rightarrow \sin x + \sin 3x + 3\sin 2x = \cos x + \cos 3x + 3\cos 2x$
$ \Rightarrow 2\sin \left( {\dfrac{{x + 3x}}{2}} \right)\cos \left( {\dfrac{{x - 3x}}{2}} \right) + 3\sin 2x = 2\cos \left( {\dfrac{{x + 3x}}{2}} \right)\cos \left( {\dfrac{{x - 3x}}{2}} \right) + 3\cos 2x$
Now simplify the above equation we have,
$ \Rightarrow 2\sin 2x\cos x + 3\sin 2x = 2\cos 2x\cos x + 3\cos 2x$ $\left[ {\because \cos \left( { - \theta } \right) = \cos \theta } \right]$
Now take common the common terms we have,
$ \Rightarrow \sin 2x\left( {2\cos x + 3} \right) = \cos 2x\left( {2\cos x + 3} \right)$
$ \Rightarrow \left( {2\cos x + 3} \right)\left( {\sin 2x - \cos 2x} \right) = 0$………………. (1)
$ \Rightarrow 2\cos x + 3 = 0$
$ \Rightarrow \cos x = \dfrac{{ - 3}}{2}$ (Which is not possible as the value of cosine is always lie between -1 to 1)
Again from equation (1) we have,
$ \Rightarrow \left( {\sin 2x - \cos 2x} \right) = 0$
$ \Rightarrow \sin 2x = \cos 2x$
$ \Rightarrow \dfrac{{\sin 2x}}{{\cos 2x}} = 1$
$ \Rightarrow \tan 2x = 1 = \tan \left( {n\pi + \dfrac{\pi }{4}} \right)$ (General solution where n = 0, 1, 2, 3, …………………. )
So on comparing
$ \Rightarrow 2x = n\pi + \dfrac{\pi }{4}$
$ \Rightarrow x = n\dfrac{\pi }{2} + \dfrac{\pi }{8}$
Now, we have to find out the value of x in the interval$0 \leqslant x \leqslant 2\pi $.
For n = 0
$ \Rightarrow x = \dfrac{\pi }{8}$.
For n = 1
$ \Rightarrow x = \dfrac{\pi }{2} + \dfrac{\pi }{8} = \dfrac{{5\pi }}{8}$
For n = 2
$ \Rightarrow x = 2\dfrac{\pi }{2} + \dfrac{\pi }{8} = \dfrac{{9\pi }}{8}$
For n = 3
$ \Rightarrow x = 3\dfrac{\pi }{2} + \dfrac{\pi }{8} = \dfrac{{13\pi }}{8}$
For n = 4
$ \Rightarrow x = 4\dfrac{\pi }{2} + \dfrac{\pi }{8} = \dfrac{{17\pi }}{8} > 2\pi $ (So this solution is not considered)
Hence the required solution is $x = \dfrac{\pi }{8},\dfrac{{5\pi }}{8},\dfrac{{9\pi }}{8},\dfrac{{13\pi }}{8}$
Hence option (b) is correct.
Note: Whenever we face such types of problems the key concept is firstly to reach to the value of x but application of various trigonometric and algebraic identities. As the trigonometric functions involved are mostly periodic in nature therefore the solution also varies in different intervals so we need to keep in mind about the interval in which the solution is being asked.
Complete step-by-step answer:
Given equation is
$\sin x + 3\sin 2x + \sin 3x = \cos x + 3\cos 2x + \cos 3x$
$ \Rightarrow \sin x + \sin 3x + 3\sin 2x = \cos x + \cos 3x + 3\cos 2x$
We have to find out the solution of this equation in the interval\[0 \leqslant x \leqslant 2\pi \].
Now as we know
$
\sin C + \sin D = 2\sin \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right) \\
\cos C + \cos D = 2\cos \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right) \\
$
So, use this property in the above equation we have,
$ \Rightarrow \sin x + \sin 3x + 3\sin 2x = \cos x + \cos 3x + 3\cos 2x$
$ \Rightarrow 2\sin \left( {\dfrac{{x + 3x}}{2}} \right)\cos \left( {\dfrac{{x - 3x}}{2}} \right) + 3\sin 2x = 2\cos \left( {\dfrac{{x + 3x}}{2}} \right)\cos \left( {\dfrac{{x - 3x}}{2}} \right) + 3\cos 2x$
Now simplify the above equation we have,
$ \Rightarrow 2\sin 2x\cos x + 3\sin 2x = 2\cos 2x\cos x + 3\cos 2x$ $\left[ {\because \cos \left( { - \theta } \right) = \cos \theta } \right]$
Now take common the common terms we have,
$ \Rightarrow \sin 2x\left( {2\cos x + 3} \right) = \cos 2x\left( {2\cos x + 3} \right)$
$ \Rightarrow \left( {2\cos x + 3} \right)\left( {\sin 2x - \cos 2x} \right) = 0$………………. (1)
$ \Rightarrow 2\cos x + 3 = 0$
$ \Rightarrow \cos x = \dfrac{{ - 3}}{2}$ (Which is not possible as the value of cosine is always lie between -1 to 1)
Again from equation (1) we have,
$ \Rightarrow \left( {\sin 2x - \cos 2x} \right) = 0$
$ \Rightarrow \sin 2x = \cos 2x$
$ \Rightarrow \dfrac{{\sin 2x}}{{\cos 2x}} = 1$
$ \Rightarrow \tan 2x = 1 = \tan \left( {n\pi + \dfrac{\pi }{4}} \right)$ (General solution where n = 0, 1, 2, 3, …………………. )
So on comparing
$ \Rightarrow 2x = n\pi + \dfrac{\pi }{4}$
$ \Rightarrow x = n\dfrac{\pi }{2} + \dfrac{\pi }{8}$
Now, we have to find out the value of x in the interval$0 \leqslant x \leqslant 2\pi $.
For n = 0
$ \Rightarrow x = \dfrac{\pi }{8}$.
For n = 1
$ \Rightarrow x = \dfrac{\pi }{2} + \dfrac{\pi }{8} = \dfrac{{5\pi }}{8}$
For n = 2
$ \Rightarrow x = 2\dfrac{\pi }{2} + \dfrac{\pi }{8} = \dfrac{{9\pi }}{8}$
For n = 3
$ \Rightarrow x = 3\dfrac{\pi }{2} + \dfrac{\pi }{8} = \dfrac{{13\pi }}{8}$
For n = 4
$ \Rightarrow x = 4\dfrac{\pi }{2} + \dfrac{\pi }{8} = \dfrac{{17\pi }}{8} > 2\pi $ (So this solution is not considered)
Hence the required solution is $x = \dfrac{\pi }{8},\dfrac{{5\pi }}{8},\dfrac{{9\pi }}{8},\dfrac{{13\pi }}{8}$
Hence option (b) is correct.
Note: Whenever we face such types of problems the key concept is firstly to reach to the value of x but application of various trigonometric and algebraic identities. As the trigonometric functions involved are mostly periodic in nature therefore the solution also varies in different intervals so we need to keep in mind about the interval in which the solution is being asked.
Recently Updated Pages
Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 7 Maths: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 6 Maths: Engaging Questions & Answers for Success

Class 6 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

