# The solution of the equation $\sin x + 3\sin 2x + \sin 3x = \cos x + 3\cos 2x + \cos 3x$ in the interval $0 \leqslant x \leqslant 2\pi $ are

$

(a){\text{ }}\dfrac{\pi }{3},\dfrac{{5\pi }}{8},\dfrac{{2\pi }}{3} \\

(b){\text{ }}\dfrac{\pi }{8},\dfrac{{5\pi }}{8},\dfrac{{9\pi }}{8},\dfrac{{13\pi }}{8} \\

(c){\text{ }}\dfrac{{4\pi }}{3},\dfrac{{9\pi }}{3},\dfrac{{2\pi }}{3},\dfrac{{13\pi }}{8} \\

(d){\text{ }}\dfrac{\pi }{8},\dfrac{{5\pi }}{8},\dfrac{{9\pi }}{3},\dfrac{{4\pi }}{3} \\

$

Last updated date: 19th Mar 2023

•

Total views: 302.7k

•

Views today: 2.82k

Answer

Verified

302.7k+ views

Hint – In this question we have to find the solution of the given equation, use trigonometric identities like $\sin C + \sin D = 2\sin \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right)$ to simplify for the value of x, but keep in mind that the solution is asked to be found only for the interval of \[0 \leqslant x \leqslant 2\pi \].

Complete step-by-step answer:

Given equation is

$\sin x + 3\sin 2x + \sin 3x = \cos x + 3\cos 2x + \cos 3x$

$ \Rightarrow \sin x + \sin 3x + 3\sin 2x = \cos x + \cos 3x + 3\cos 2x$

We have to find out the solution of this equation in the interval\[0 \leqslant x \leqslant 2\pi \].

Now as we know

$

\sin C + \sin D = 2\sin \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right) \\

\cos C + \cos D = 2\cos \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right) \\

$

So, use this property in the above equation we have,

$ \Rightarrow \sin x + \sin 3x + 3\sin 2x = \cos x + \cos 3x + 3\cos 2x$

$ \Rightarrow 2\sin \left( {\dfrac{{x + 3x}}{2}} \right)\cos \left( {\dfrac{{x - 3x}}{2}} \right) + 3\sin 2x = 2\cos \left( {\dfrac{{x + 3x}}{2}} \right)\cos \left( {\dfrac{{x - 3x}}{2}} \right) + 3\cos 2x$

Now simplify the above equation we have,

$ \Rightarrow 2\sin 2x\cos x + 3\sin 2x = 2\cos 2x\cos x + 3\cos 2x$ $\left[ {\because \cos \left( { - \theta } \right) = \cos \theta } \right]$

Now take common the common terms we have,

$ \Rightarrow \sin 2x\left( {2\cos x + 3} \right) = \cos 2x\left( {2\cos x + 3} \right)$

$ \Rightarrow \left( {2\cos x + 3} \right)\left( {\sin 2x - \cos 2x} \right) = 0$………………. (1)

$ \Rightarrow 2\cos x + 3 = 0$

$ \Rightarrow \cos x = \dfrac{{ - 3}}{2}$ (Which is not possible as the value of cosine is always lie between -1 to 1)

Again from equation (1) we have,

$ \Rightarrow \left( {\sin 2x - \cos 2x} \right) = 0$

$ \Rightarrow \sin 2x = \cos 2x$

$ \Rightarrow \dfrac{{\sin 2x}}{{\cos 2x}} = 1$

$ \Rightarrow \tan 2x = 1 = \tan \left( {n\pi + \dfrac{\pi }{4}} \right)$ (General solution where n = 0, 1, 2, 3, …………………. )

So on comparing

$ \Rightarrow 2x = n\pi + \dfrac{\pi }{4}$

$ \Rightarrow x = n\dfrac{\pi }{2} + \dfrac{\pi }{8}$

Now, we have to find out the value of x in the interval$0 \leqslant x \leqslant 2\pi $.

For n = 0

$ \Rightarrow x = \dfrac{\pi }{8}$.

For n = 1

$ \Rightarrow x = \dfrac{\pi }{2} + \dfrac{\pi }{8} = \dfrac{{5\pi }}{8}$

For n = 2

$ \Rightarrow x = 2\dfrac{\pi }{2} + \dfrac{\pi }{8} = \dfrac{{9\pi }}{8}$

For n = 3

$ \Rightarrow x = 3\dfrac{\pi }{2} + \dfrac{\pi }{8} = \dfrac{{13\pi }}{8}$

For n = 4

$ \Rightarrow x = 4\dfrac{\pi }{2} + \dfrac{\pi }{8} = \dfrac{{17\pi }}{8} > 2\pi $ (So this solution is not considered)

Hence the required solution is $x = \dfrac{\pi }{8},\dfrac{{5\pi }}{8},\dfrac{{9\pi }}{8},\dfrac{{13\pi }}{8}$

Hence option (b) is correct.

Note: Whenever we face such types of problems the key concept is firstly to reach to the value of x but application of various trigonometric and algebraic identities. As the trigonometric functions involved are mostly periodic in nature therefore the solution also varies in different intervals so we need to keep in mind about the interval in which the solution is being asked.

Complete step-by-step answer:

Given equation is

$\sin x + 3\sin 2x + \sin 3x = \cos x + 3\cos 2x + \cos 3x$

$ \Rightarrow \sin x + \sin 3x + 3\sin 2x = \cos x + \cos 3x + 3\cos 2x$

We have to find out the solution of this equation in the interval\[0 \leqslant x \leqslant 2\pi \].

Now as we know

$

\sin C + \sin D = 2\sin \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right) \\

\cos C + \cos D = 2\cos \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right) \\

$

So, use this property in the above equation we have,

$ \Rightarrow \sin x + \sin 3x + 3\sin 2x = \cos x + \cos 3x + 3\cos 2x$

$ \Rightarrow 2\sin \left( {\dfrac{{x + 3x}}{2}} \right)\cos \left( {\dfrac{{x - 3x}}{2}} \right) + 3\sin 2x = 2\cos \left( {\dfrac{{x + 3x}}{2}} \right)\cos \left( {\dfrac{{x - 3x}}{2}} \right) + 3\cos 2x$

Now simplify the above equation we have,

$ \Rightarrow 2\sin 2x\cos x + 3\sin 2x = 2\cos 2x\cos x + 3\cos 2x$ $\left[ {\because \cos \left( { - \theta } \right) = \cos \theta } \right]$

Now take common the common terms we have,

$ \Rightarrow \sin 2x\left( {2\cos x + 3} \right) = \cos 2x\left( {2\cos x + 3} \right)$

$ \Rightarrow \left( {2\cos x + 3} \right)\left( {\sin 2x - \cos 2x} \right) = 0$………………. (1)

$ \Rightarrow 2\cos x + 3 = 0$

$ \Rightarrow \cos x = \dfrac{{ - 3}}{2}$ (Which is not possible as the value of cosine is always lie between -1 to 1)

Again from equation (1) we have,

$ \Rightarrow \left( {\sin 2x - \cos 2x} \right) = 0$

$ \Rightarrow \sin 2x = \cos 2x$

$ \Rightarrow \dfrac{{\sin 2x}}{{\cos 2x}} = 1$

$ \Rightarrow \tan 2x = 1 = \tan \left( {n\pi + \dfrac{\pi }{4}} \right)$ (General solution where n = 0, 1, 2, 3, …………………. )

So on comparing

$ \Rightarrow 2x = n\pi + \dfrac{\pi }{4}$

$ \Rightarrow x = n\dfrac{\pi }{2} + \dfrac{\pi }{8}$

Now, we have to find out the value of x in the interval$0 \leqslant x \leqslant 2\pi $.

For n = 0

$ \Rightarrow x = \dfrac{\pi }{8}$.

For n = 1

$ \Rightarrow x = \dfrac{\pi }{2} + \dfrac{\pi }{8} = \dfrac{{5\pi }}{8}$

For n = 2

$ \Rightarrow x = 2\dfrac{\pi }{2} + \dfrac{\pi }{8} = \dfrac{{9\pi }}{8}$

For n = 3

$ \Rightarrow x = 3\dfrac{\pi }{2} + \dfrac{\pi }{8} = \dfrac{{13\pi }}{8}$

For n = 4

$ \Rightarrow x = 4\dfrac{\pi }{2} + \dfrac{\pi }{8} = \dfrac{{17\pi }}{8} > 2\pi $ (So this solution is not considered)

Hence the required solution is $x = \dfrac{\pi }{8},\dfrac{{5\pi }}{8},\dfrac{{9\pi }}{8},\dfrac{{13\pi }}{8}$

Hence option (b) is correct.

Note: Whenever we face such types of problems the key concept is firstly to reach to the value of x but application of various trigonometric and algebraic identities. As the trigonometric functions involved are mostly periodic in nature therefore the solution also varies in different intervals so we need to keep in mind about the interval in which the solution is being asked.

Recently Updated Pages

Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE