
The solution of the differential equation $xdy-ydx=\left( \sqrt{{{x}^{2}}+{{y}^{2}}} \right)dx$ is
(A). $y-\sqrt{{{x}^{2}}+{{y}^{2}}}=C{{x}^{2}}$
(B). $y+\sqrt{{{x}^{2}}+{{y}^{2}}}=C{{x}^{2}}$
(C). $y+\sqrt{{{x}^{2}}+{{y}^{2}}}+C{{x}^{2}}=0$
(D). None of these
Answer
516.6k+ views
Hint: Any differential equation would be of homogeneous type if the given function F (x, y) follows the equation $F\left( \lambda x,\lambda y \right)={{\lambda }^{n}}F\left( x,y \right)$ where n is an integer. And we can solve any differential equation in variables ‘x’ and ‘y’ by putting y = vx or x = vy where ‘v’ is another variable. Now, try to solve it. And use the integration of $\dfrac{1}{{{x}^{2}}+{{a}^{2}}}$given as $\int{\dfrac{dx}{\sqrt{{{x}^{2}}+{{a}^{2}}}}=\log \left( x+\sqrt{{{x}^{2}}+{{a}^{2}}} \right)}$.
Complete step-by-step solution -
Given differential equation is,
$xdy-ydx=\left( \sqrt{{{x}^{2}}+{{y}^{2}}} \right)dx.............\left( i \right)$
On dividing the whole equation (i) by ‘dx’ we get,
$\begin{align}
& x\dfrac{dy}{dx}-y=\left( \sqrt{{{x}^{2}}+{{y}^{2}}} \right) \\
& or \\
& \dfrac{dy}{dx}=\dfrac{\sqrt{{{x}^{2}}+{{y}^{2}}}+y}{x}...........\left( ii \right) \\
\end{align}$
Now, we need to observe the type of differential equation i.e. variable separable or linear or homogeneous equation.
Here, we can observe that we cannot separate the variables ‘x’ and ‘y’ and cannot form a linear relation as well.
So, let us check whether the differential equation is homogeneous or not?
Let $F\left( x,y \right)=\dfrac{y+\sqrt{{{x}^{2}}+{{y}^{2}}}}{x}$
Replace $\left( x,y \right)\ by\ \left( \lambda x,\lambda y \right)$ and try to get an equation of type ${{\lambda }^{n}}F\left( x,y \right)$.
Hence,
$\begin{align}
& F\left( \lambda x,\lambda y \right)=\dfrac{\lambda y+\sqrt{{{\left( \lambda x \right)}^{2}}+{{\left( \lambda y \right)}^{2}}}}{\lambda x} \\
& F\left( \lambda x,\lambda y \right)=\dfrac{\lambda y+\lambda \sqrt{{{x}^{2}}+{{y}^{2}}}}{\lambda x} \\
& F\left( \lambda x,\lambda y \right)=\lambda {}^\circ F\left( x,y \right) \\
\end{align}$
Hence, the given differential equation is of homogeneous type.
So, take y = vx in equation (ii).
Now, differentiating y = vx, we get;
$\dfrac{dy}{dx}=v\dfrac{dx}{dx}+x\dfrac{dv}{dx}$
Where, we used relation
$\dfrac{d}{dx}\left( u.v \right)=u\dfrac{du}{dx}+v\dfrac{du}{dx}$
Hence, we get
$\dfrac{dy}{dx}=v+x\dfrac{dv}{dx}..............\left( iii \right)$
So, equation (ii) can be written as
$\begin{align}
& v+x\dfrac{dv}{dx}=\dfrac{\sqrt{{{x}^{2}}+{{\left( vx \right)}^{2}}}+vx}{x} \\
& v+x\dfrac{dv}{dx}=\dfrac{x\sqrt{1+{{v}^{2}}}+vx}{x} \\
& v+x\dfrac{dv}{dx}=\sqrt{1+{{v}^{2}}}+v \\
& x\dfrac{dv}{dx}=\sqrt{1+{{v}^{2}}}..............\left( iv \right) \\
\end{align}$
Now, it’s a simple variable separable differential equation and can be written as,
$\int{\dfrac{dv}{\sqrt{1+{{v}^{2}}}}=\int{\dfrac{1}{x}dx...........\left( v \right)}}$
Now, we know,
$\begin{align}
& \int{\dfrac{1}{\sqrt{{{a}^{2}}+{{x}^{2}}}}dx={{\log }_{e}}\left( x+\sqrt{{{a}^{2}}+{{x}^{2}}} \right)} \\
& \int{\dfrac{1}{x}dx}={{\log }_{e}}x \\
\end{align}$
Hence, equation (v) can be written as,
${{\log }_{e}}\left( 1+\sqrt{1+{{v}^{2}}} \right)={{\log }_{e}}x+{{\log }_{e}}c$
Where ${{\log }_{e}}c$ is a constant.
Now, we can use property of logarithm as,
${{\log }_{a}}m+{{\log }_{a}}n={{\log }_{a}}\left( mn \right)$
So, we get
${{\log }_{e}}\left( 1+\sqrt{1+{{v}^{2}}} \right)={{\log }_{e}}xc$
And hence,
$1+\sqrt{1+{{v}^{2}}}=cx$
Now, putting the value of $v=\dfrac{y}{x}$ by relation y = vx. Hence, above equation can be written as’
$\begin{align}
& 1+\sqrt{1+{{\left( \dfrac{y}{x} \right)}^{2}}}=cx \\
& 1+\dfrac{\sqrt{{{x}^{2}}+{{y}^{2}}}}{x}=cx \\
& or \\
& x+\sqrt{{{x}^{2}}+{{y}^{2}}}=c{{x}^{2}} \\
\end{align}$
And hence, option (B) is the correct answer.
Note: Calculation is the important side of the question.
Observation is the key of the differential equations. One can use x = vy relation as well for solving the given equation.
One may get confused why constant term is taken in log in solution.
Reason is simple, for the simplicity of the equation so that we can remove ‘log’ from the solution part. And we can use ${{\log }_{e}}c\ or\ C\ or\ {{\tan }^{-1}}c$ etc. for writing the constant part in indefinite integral.
Complete step-by-step solution -
Given differential equation is,
$xdy-ydx=\left( \sqrt{{{x}^{2}}+{{y}^{2}}} \right)dx.............\left( i \right)$
On dividing the whole equation (i) by ‘dx’ we get,
$\begin{align}
& x\dfrac{dy}{dx}-y=\left( \sqrt{{{x}^{2}}+{{y}^{2}}} \right) \\
& or \\
& \dfrac{dy}{dx}=\dfrac{\sqrt{{{x}^{2}}+{{y}^{2}}}+y}{x}...........\left( ii \right) \\
\end{align}$
Now, we need to observe the type of differential equation i.e. variable separable or linear or homogeneous equation.
Here, we can observe that we cannot separate the variables ‘x’ and ‘y’ and cannot form a linear relation as well.
So, let us check whether the differential equation is homogeneous or not?
Let $F\left( x,y \right)=\dfrac{y+\sqrt{{{x}^{2}}+{{y}^{2}}}}{x}$
Replace $\left( x,y \right)\ by\ \left( \lambda x,\lambda y \right)$ and try to get an equation of type ${{\lambda }^{n}}F\left( x,y \right)$.
Hence,
$\begin{align}
& F\left( \lambda x,\lambda y \right)=\dfrac{\lambda y+\sqrt{{{\left( \lambda x \right)}^{2}}+{{\left( \lambda y \right)}^{2}}}}{\lambda x} \\
& F\left( \lambda x,\lambda y \right)=\dfrac{\lambda y+\lambda \sqrt{{{x}^{2}}+{{y}^{2}}}}{\lambda x} \\
& F\left( \lambda x,\lambda y \right)=\lambda {}^\circ F\left( x,y \right) \\
\end{align}$
Hence, the given differential equation is of homogeneous type.
So, take y = vx in equation (ii).
Now, differentiating y = vx, we get;
$\dfrac{dy}{dx}=v\dfrac{dx}{dx}+x\dfrac{dv}{dx}$
Where, we used relation
$\dfrac{d}{dx}\left( u.v \right)=u\dfrac{du}{dx}+v\dfrac{du}{dx}$
Hence, we get
$\dfrac{dy}{dx}=v+x\dfrac{dv}{dx}..............\left( iii \right)$
So, equation (ii) can be written as
$\begin{align}
& v+x\dfrac{dv}{dx}=\dfrac{\sqrt{{{x}^{2}}+{{\left( vx \right)}^{2}}}+vx}{x} \\
& v+x\dfrac{dv}{dx}=\dfrac{x\sqrt{1+{{v}^{2}}}+vx}{x} \\
& v+x\dfrac{dv}{dx}=\sqrt{1+{{v}^{2}}}+v \\
& x\dfrac{dv}{dx}=\sqrt{1+{{v}^{2}}}..............\left( iv \right) \\
\end{align}$
Now, it’s a simple variable separable differential equation and can be written as,
$\int{\dfrac{dv}{\sqrt{1+{{v}^{2}}}}=\int{\dfrac{1}{x}dx...........\left( v \right)}}$
Now, we know,
$\begin{align}
& \int{\dfrac{1}{\sqrt{{{a}^{2}}+{{x}^{2}}}}dx={{\log }_{e}}\left( x+\sqrt{{{a}^{2}}+{{x}^{2}}} \right)} \\
& \int{\dfrac{1}{x}dx}={{\log }_{e}}x \\
\end{align}$
Hence, equation (v) can be written as,
${{\log }_{e}}\left( 1+\sqrt{1+{{v}^{2}}} \right)={{\log }_{e}}x+{{\log }_{e}}c$
Where ${{\log }_{e}}c$ is a constant.
Now, we can use property of logarithm as,
${{\log }_{a}}m+{{\log }_{a}}n={{\log }_{a}}\left( mn \right)$
So, we get
${{\log }_{e}}\left( 1+\sqrt{1+{{v}^{2}}} \right)={{\log }_{e}}xc$
And hence,
$1+\sqrt{1+{{v}^{2}}}=cx$
Now, putting the value of $v=\dfrac{y}{x}$ by relation y = vx. Hence, above equation can be written as’
$\begin{align}
& 1+\sqrt{1+{{\left( \dfrac{y}{x} \right)}^{2}}}=cx \\
& 1+\dfrac{\sqrt{{{x}^{2}}+{{y}^{2}}}}{x}=cx \\
& or \\
& x+\sqrt{{{x}^{2}}+{{y}^{2}}}=c{{x}^{2}} \\
\end{align}$
And hence, option (B) is the correct answer.
Note: Calculation is the important side of the question.
Observation is the key of the differential equations. One can use x = vy relation as well for solving the given equation.
One may get confused why constant term is taken in log in solution.
Reason is simple, for the simplicity of the equation so that we can remove ‘log’ from the solution part. And we can use ${{\log }_{e}}c\ or\ C\ or\ {{\tan }^{-1}}c$ etc. for writing the constant part in indefinite integral.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
The probability that a leap year will have only 52 class 12 maths CBSE

Describe the poetic devices used in the poem Aunt Jennifers class 12 english CBSE

And such too is the grandeur of the dooms We have imagined class 12 english CBSE

What does the god that failed refer to class 12 english CBSE

Which country did Danny Casey play for class 12 english CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE
