
The solution of \[\dfrac{{dy}}{{dx}} = \sin (x + y) + \cos (x + y)\]is:
A. \[\log \left[ {1 + \tan \left( {\dfrac{{x + y}}{2}} \right)} \right] + c = 0\]
B. \[\log \left[ {1 + \tan \left( {\dfrac{{x + y}}{2}} \right)} \right] = x + c\]
C. \[\log \left[ {1 - \tan \left( {\dfrac{{x + y}}{2}} \right)} \right] = x + c\]
D. None of these.
Answer
516k+ views
Hint:
Some formulae of integration that can be useful in solving such questions:
1) \[\int {dx = x + C} \]
2) \[\int {\dfrac{{dx}}{x} = \log |x| + C} \]
Where, C= constant of integration.
Variable separable method is used for solving differential equations in which the variables can be separated easily and can be integrable.
Complete step by step solution:
Given: \[\dfrac{{dy}}{{dx}} = \sin (x + y) + \cos (x + y)\]
Put \[x + y\]=t;
\[
\Rightarrow 1 + \dfrac{{dy}}{{dx}} = \dfrac{{dt}}{{dx}} \\
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{dt}}{{dx}} - 1 \\
\]
Putting above values we get,
\[ \Rightarrow \dfrac{{dt}}{{dx}} - 1 = \sin t + \cos t\]
\[ \Rightarrow \dfrac{{dt}}{{dx}} = \sin t + \cos t + 1\]
Now using separation of variables we get;
\[ \Rightarrow \dfrac{{dt}}{{\sin t + \cos t + 1}} = dx\]
Simplifying the above equation we get;
\[
\Rightarrow \dfrac{{dt}}{{\sin t + \cos t + 1}} = dx \\
\Rightarrow \dfrac{{dt}}{{2\sin \left( {\dfrac{t}{2}} \right)\cos \left( {\dfrac{t}{2}} \right) + 2{{\cos }^2}\left( {\dfrac{t}{2}} \right)}} = dx........(u\sin g:1 + \cos 2x = 2{\cos ^2}x,\sin 2x = 2\sin x\cos x) \\
\Rightarrow \dfrac{{dt}}{{2\cos \left( {\dfrac{t}{2}} \right)\left( {\sin \left( {\dfrac{t}{2}} \right) + \cos \left( {\dfrac{t}{2}} \right)} \right)}} = dx \\
\Rightarrow \dfrac{1}{2}\dfrac{{\sec \left( {\dfrac{t}{2}} \right)dt}}{{\left( {\sin \left( {\dfrac{t}{2}} \right) + \cos \left( {\dfrac{t}{2}} \right)} \right)}} = dx \\
\]
Dividing each term by \[\cos \left( {\dfrac{t}{2}} \right)\]:
\[ \Rightarrow \dfrac{1}{2}\dfrac{{{{\sec }^2}\left( {\dfrac{t}{2}} \right)}}{{\left( {1 + \tan \left( {\dfrac{t}{2}} \right)} \right)}}dt = dx.......EQ:01\]
To solve above equation put \[1 + \tan \left( {\dfrac{t}{2}} \right) = z\]
\[
\Rightarrow {\sec ^2}\left( {\dfrac{t}{2}} \right) \times \dfrac{1}{2}dt = dz \\
\Rightarrow {\sec ^2}\left( {\dfrac{t}{2}} \right)dt = 2dz \\
\]
Putting \[{\sec ^2}\left( {\dfrac{t}{2}} \right)dt = 2dz\]in EQ:01,
\[
\Rightarrow \dfrac{1}{2}(2)\dfrac{{dz}}{{\left( z \right)}} = dx \\
\Rightarrow \dfrac{{dz}}{{\left( z \right)}} = dx \\
\]
On integrating we get;
\[
\Rightarrow \int {\dfrac{{dz}}{{\left( z \right)}}} = \int {dx} \\
\Rightarrow \log |z| = x + c \\
\]
Put back the value-: \[z = 1 + \tan \left( {\dfrac{t}{2}} \right)\].
\[ \Rightarrow \log |1 + \tan \left( {\dfrac{t}{2}} \right)| = x + c\]
Again put \[x + y\]=t in above equation;
\[ \Rightarrow \log |1 + \tan \left( {\dfrac{{x + y}}{2}} \right)| = x + c\]
Option (B) is correct.
Note:
Student’s have to check whether the variables are in simpler form or complex form. If they are in complex form by substituting make them in simpler form. After that you can use methods like variable separation to solve the differential equation.
Some formulae of integration that can be useful in solving such questions:
1) \[\int {dx = x + C} \]
2) \[\int {\dfrac{{dx}}{x} = \log |x| + C} \]
Where, C= constant of integration.
Variable separable method is used for solving differential equations in which the variables can be separated easily and can be integrable.
Complete step by step solution:
Given: \[\dfrac{{dy}}{{dx}} = \sin (x + y) + \cos (x + y)\]
Put \[x + y\]=t;
\[
\Rightarrow 1 + \dfrac{{dy}}{{dx}} = \dfrac{{dt}}{{dx}} \\
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{dt}}{{dx}} - 1 \\
\]
Putting above values we get,
\[ \Rightarrow \dfrac{{dt}}{{dx}} - 1 = \sin t + \cos t\]
\[ \Rightarrow \dfrac{{dt}}{{dx}} = \sin t + \cos t + 1\]
Now using separation of variables we get;
\[ \Rightarrow \dfrac{{dt}}{{\sin t + \cos t + 1}} = dx\]
Simplifying the above equation we get;
\[
\Rightarrow \dfrac{{dt}}{{\sin t + \cos t + 1}} = dx \\
\Rightarrow \dfrac{{dt}}{{2\sin \left( {\dfrac{t}{2}} \right)\cos \left( {\dfrac{t}{2}} \right) + 2{{\cos }^2}\left( {\dfrac{t}{2}} \right)}} = dx........(u\sin g:1 + \cos 2x = 2{\cos ^2}x,\sin 2x = 2\sin x\cos x) \\
\Rightarrow \dfrac{{dt}}{{2\cos \left( {\dfrac{t}{2}} \right)\left( {\sin \left( {\dfrac{t}{2}} \right) + \cos \left( {\dfrac{t}{2}} \right)} \right)}} = dx \\
\Rightarrow \dfrac{1}{2}\dfrac{{\sec \left( {\dfrac{t}{2}} \right)dt}}{{\left( {\sin \left( {\dfrac{t}{2}} \right) + \cos \left( {\dfrac{t}{2}} \right)} \right)}} = dx \\
\]
Dividing each term by \[\cos \left( {\dfrac{t}{2}} \right)\]:
\[ \Rightarrow \dfrac{1}{2}\dfrac{{{{\sec }^2}\left( {\dfrac{t}{2}} \right)}}{{\left( {1 + \tan \left( {\dfrac{t}{2}} \right)} \right)}}dt = dx.......EQ:01\]
To solve above equation put \[1 + \tan \left( {\dfrac{t}{2}} \right) = z\]
\[
\Rightarrow {\sec ^2}\left( {\dfrac{t}{2}} \right) \times \dfrac{1}{2}dt = dz \\
\Rightarrow {\sec ^2}\left( {\dfrac{t}{2}} \right)dt = 2dz \\
\]
Putting \[{\sec ^2}\left( {\dfrac{t}{2}} \right)dt = 2dz\]in EQ:01,
\[
\Rightarrow \dfrac{1}{2}(2)\dfrac{{dz}}{{\left( z \right)}} = dx \\
\Rightarrow \dfrac{{dz}}{{\left( z \right)}} = dx \\
\]
On integrating we get;
\[
\Rightarrow \int {\dfrac{{dz}}{{\left( z \right)}}} = \int {dx} \\
\Rightarrow \log |z| = x + c \\
\]
Put back the value-: \[z = 1 + \tan \left( {\dfrac{t}{2}} \right)\].
\[ \Rightarrow \log |1 + \tan \left( {\dfrac{t}{2}} \right)| = x + c\]
Again put \[x + y\]=t in above equation;
\[ \Rightarrow \log |1 + \tan \left( {\dfrac{{x + y}}{2}} \right)| = x + c\]
Option (B) is correct.
Note:
Student’s have to check whether the variables are in simpler form or complex form. If they are in complex form by substituting make them in simpler form. After that you can use methods like variable separation to solve the differential equation.
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Who discovered the cell and how class 12 biology CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE
