
The solution of \[\dfrac{{dy}}{{dx}} = \sin (x + y) + \cos (x + y)\]is:
A. \[\log \left[ {1 + \tan \left( {\dfrac{{x + y}}{2}} \right)} \right] + c = 0\]
B. \[\log \left[ {1 + \tan \left( {\dfrac{{x + y}}{2}} \right)} \right] = x + c\]
C. \[\log \left[ {1 - \tan \left( {\dfrac{{x + y}}{2}} \right)} \right] = x + c\]
D. None of these.
Answer
563.1k+ views
Hint:
Some formulae of integration that can be useful in solving such questions:
1) \[\int {dx = x + C} \]
2) \[\int {\dfrac{{dx}}{x} = \log |x| + C} \]
Where, C= constant of integration.
Variable separable method is used for solving differential equations in which the variables can be separated easily and can be integrable.
Complete step by step solution:
Given: \[\dfrac{{dy}}{{dx}} = \sin (x + y) + \cos (x + y)\]
Put \[x + y\]=t;
\[
\Rightarrow 1 + \dfrac{{dy}}{{dx}} = \dfrac{{dt}}{{dx}} \\
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{dt}}{{dx}} - 1 \\
\]
Putting above values we get,
\[ \Rightarrow \dfrac{{dt}}{{dx}} - 1 = \sin t + \cos t\]
\[ \Rightarrow \dfrac{{dt}}{{dx}} = \sin t + \cos t + 1\]
Now using separation of variables we get;
\[ \Rightarrow \dfrac{{dt}}{{\sin t + \cos t + 1}} = dx\]
Simplifying the above equation we get;
\[
\Rightarrow \dfrac{{dt}}{{\sin t + \cos t + 1}} = dx \\
\Rightarrow \dfrac{{dt}}{{2\sin \left( {\dfrac{t}{2}} \right)\cos \left( {\dfrac{t}{2}} \right) + 2{{\cos }^2}\left( {\dfrac{t}{2}} \right)}} = dx........(u\sin g:1 + \cos 2x = 2{\cos ^2}x,\sin 2x = 2\sin x\cos x) \\
\Rightarrow \dfrac{{dt}}{{2\cos \left( {\dfrac{t}{2}} \right)\left( {\sin \left( {\dfrac{t}{2}} \right) + \cos \left( {\dfrac{t}{2}} \right)} \right)}} = dx \\
\Rightarrow \dfrac{1}{2}\dfrac{{\sec \left( {\dfrac{t}{2}} \right)dt}}{{\left( {\sin \left( {\dfrac{t}{2}} \right) + \cos \left( {\dfrac{t}{2}} \right)} \right)}} = dx \\
\]
Dividing each term by \[\cos \left( {\dfrac{t}{2}} \right)\]:
\[ \Rightarrow \dfrac{1}{2}\dfrac{{{{\sec }^2}\left( {\dfrac{t}{2}} \right)}}{{\left( {1 + \tan \left( {\dfrac{t}{2}} \right)} \right)}}dt = dx.......EQ:01\]
To solve above equation put \[1 + \tan \left( {\dfrac{t}{2}} \right) = z\]
\[
\Rightarrow {\sec ^2}\left( {\dfrac{t}{2}} \right) \times \dfrac{1}{2}dt = dz \\
\Rightarrow {\sec ^2}\left( {\dfrac{t}{2}} \right)dt = 2dz \\
\]
Putting \[{\sec ^2}\left( {\dfrac{t}{2}} \right)dt = 2dz\]in EQ:01,
\[
\Rightarrow \dfrac{1}{2}(2)\dfrac{{dz}}{{\left( z \right)}} = dx \\
\Rightarrow \dfrac{{dz}}{{\left( z \right)}} = dx \\
\]
On integrating we get;
\[
\Rightarrow \int {\dfrac{{dz}}{{\left( z \right)}}} = \int {dx} \\
\Rightarrow \log |z| = x + c \\
\]
Put back the value-: \[z = 1 + \tan \left( {\dfrac{t}{2}} \right)\].
\[ \Rightarrow \log |1 + \tan \left( {\dfrac{t}{2}} \right)| = x + c\]
Again put \[x + y\]=t in above equation;
\[ \Rightarrow \log |1 + \tan \left( {\dfrac{{x + y}}{2}} \right)| = x + c\]
Option (B) is correct.
Note:
Student’s have to check whether the variables are in simpler form or complex form. If they are in complex form by substituting make them in simpler form. After that you can use methods like variable separation to solve the differential equation.
Some formulae of integration that can be useful in solving such questions:
1) \[\int {dx = x + C} \]
2) \[\int {\dfrac{{dx}}{x} = \log |x| + C} \]
Where, C= constant of integration.
Variable separable method is used for solving differential equations in which the variables can be separated easily and can be integrable.
Complete step by step solution:
Given: \[\dfrac{{dy}}{{dx}} = \sin (x + y) + \cos (x + y)\]
Put \[x + y\]=t;
\[
\Rightarrow 1 + \dfrac{{dy}}{{dx}} = \dfrac{{dt}}{{dx}} \\
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{dt}}{{dx}} - 1 \\
\]
Putting above values we get,
\[ \Rightarrow \dfrac{{dt}}{{dx}} - 1 = \sin t + \cos t\]
\[ \Rightarrow \dfrac{{dt}}{{dx}} = \sin t + \cos t + 1\]
Now using separation of variables we get;
\[ \Rightarrow \dfrac{{dt}}{{\sin t + \cos t + 1}} = dx\]
Simplifying the above equation we get;
\[
\Rightarrow \dfrac{{dt}}{{\sin t + \cos t + 1}} = dx \\
\Rightarrow \dfrac{{dt}}{{2\sin \left( {\dfrac{t}{2}} \right)\cos \left( {\dfrac{t}{2}} \right) + 2{{\cos }^2}\left( {\dfrac{t}{2}} \right)}} = dx........(u\sin g:1 + \cos 2x = 2{\cos ^2}x,\sin 2x = 2\sin x\cos x) \\
\Rightarrow \dfrac{{dt}}{{2\cos \left( {\dfrac{t}{2}} \right)\left( {\sin \left( {\dfrac{t}{2}} \right) + \cos \left( {\dfrac{t}{2}} \right)} \right)}} = dx \\
\Rightarrow \dfrac{1}{2}\dfrac{{\sec \left( {\dfrac{t}{2}} \right)dt}}{{\left( {\sin \left( {\dfrac{t}{2}} \right) + \cos \left( {\dfrac{t}{2}} \right)} \right)}} = dx \\
\]
Dividing each term by \[\cos \left( {\dfrac{t}{2}} \right)\]:
\[ \Rightarrow \dfrac{1}{2}\dfrac{{{{\sec }^2}\left( {\dfrac{t}{2}} \right)}}{{\left( {1 + \tan \left( {\dfrac{t}{2}} \right)} \right)}}dt = dx.......EQ:01\]
To solve above equation put \[1 + \tan \left( {\dfrac{t}{2}} \right) = z\]
\[
\Rightarrow {\sec ^2}\left( {\dfrac{t}{2}} \right) \times \dfrac{1}{2}dt = dz \\
\Rightarrow {\sec ^2}\left( {\dfrac{t}{2}} \right)dt = 2dz \\
\]
Putting \[{\sec ^2}\left( {\dfrac{t}{2}} \right)dt = 2dz\]in EQ:01,
\[
\Rightarrow \dfrac{1}{2}(2)\dfrac{{dz}}{{\left( z \right)}} = dx \\
\Rightarrow \dfrac{{dz}}{{\left( z \right)}} = dx \\
\]
On integrating we get;
\[
\Rightarrow \int {\dfrac{{dz}}{{\left( z \right)}}} = \int {dx} \\
\Rightarrow \log |z| = x + c \\
\]
Put back the value-: \[z = 1 + \tan \left( {\dfrac{t}{2}} \right)\].
\[ \Rightarrow \log |1 + \tan \left( {\dfrac{t}{2}} \right)| = x + c\]
Again put \[x + y\]=t in above equation;
\[ \Rightarrow \log |1 + \tan \left( {\dfrac{{x + y}}{2}} \right)| = x + c\]
Option (B) is correct.
Note:
Student’s have to check whether the variables are in simpler form or complex form. If they are in complex form by substituting make them in simpler form. After that you can use methods like variable separation to solve the differential equation.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

