
The simplified value of $\sqrt{72}+\sqrt{800}-\sqrt{18}$ is :
Answer
514.2k+ views
Hint: The given problem is related to the square root of numbers. Find the square root of the numbers by factorization and then use mathematical operations to evaluate the simplified value of the given expression.
Complete step-by-step answer:
We are asked to find the simplified value of $\sqrt{72}+\sqrt{800}-\sqrt{18}$. First, we will evaluate the value of each term, then find the simplified value of the expression. To find the value of each term, we will determine the value of the square root by factorization.
We know, $72=2\times 2\times 2\times 3\times 3$. So, $\sqrt{72}=\sqrt{2\times 2\times 2\times 3\times 3}$ . We will express the factors as a product of squares of prime numbers. So, $\sqrt{72}=\sqrt{{{2}^{2}}\times {{3}^{2}}\times 2}$.
$=2\times 3\times \sqrt{2}$
$=6\sqrt{2}$
Now, $800=2\times 2\times 2\times 2\times 2\times 5\times 5$ . So, $\sqrt{800}=\sqrt{2\times 2\times 2\times 2\times 2\times 5\times 5}$ . We will express the factors as a product of squares of prime numbers. So, \[\sqrt{800}=\sqrt{{{2}^{2}}\times {{2}^{2}}\times {{5}^{2}}\times 2}\] .
\[=2\times 2\times 5\times \sqrt{2}\]
\[=20\sqrt{2}\]
Now, $18=2\times 3\times 3$ . So, $\sqrt{18}=\sqrt{2\times 3\times 3}$ . We will express the factors as a product of squares of prime numbers. So, $\sqrt{18}=\sqrt{{{3}^{2}}\times 2}$ .
$=3\sqrt{2}$
Now, we have the values of the square root of all the terms given in the expression. Now, we can find the value of the expression. The given expression is $\sqrt{72}+\sqrt{800}-\sqrt{18}$ . We have calculated the values of $\sqrt{72},\sqrt{800}$ and $\sqrt{18}$ as $20\sqrt{2}$ , $3\sqrt{2}$ , and $6\sqrt{2}$ respectively. Now, we will substitute the values of $\sqrt{72},\sqrt{800}$ and $\sqrt{18}$ in the given expression. On substituting the values of $\sqrt{72},\sqrt{800}$ and $\sqrt{18}$ in the given expression, we get:
$\sqrt{72}+\sqrt{800}-\sqrt{18}=6\sqrt{2}+20\sqrt{2}-3\sqrt{2}$
Now, we will take $\sqrt{2}$ common from all three terms. On taking $\sqrt{2}$ common from all three terms, we get $\sqrt{72}+\sqrt{800}-\sqrt{18}=\left( 6+20-3 \right)\sqrt{2}=23\sqrt{2}$.
Hence, the simplified value of the expression $\sqrt{72}+\sqrt{800}-\sqrt{18}$ is equal to $23\sqrt{2}$ .
Note: While evaluating the square root of a number, it is better to express the number as a product of its prime factors. This way, it will be easier to calculate the square root and there will be no confusion while evaluating the square root.
Complete step-by-step answer:
We are asked to find the simplified value of $\sqrt{72}+\sqrt{800}-\sqrt{18}$. First, we will evaluate the value of each term, then find the simplified value of the expression. To find the value of each term, we will determine the value of the square root by factorization.
We know, $72=2\times 2\times 2\times 3\times 3$. So, $\sqrt{72}=\sqrt{2\times 2\times 2\times 3\times 3}$ . We will express the factors as a product of squares of prime numbers. So, $\sqrt{72}=\sqrt{{{2}^{2}}\times {{3}^{2}}\times 2}$.
$=2\times 3\times \sqrt{2}$
$=6\sqrt{2}$
Now, $800=2\times 2\times 2\times 2\times 2\times 5\times 5$ . So, $\sqrt{800}=\sqrt{2\times 2\times 2\times 2\times 2\times 5\times 5}$ . We will express the factors as a product of squares of prime numbers. So, \[\sqrt{800}=\sqrt{{{2}^{2}}\times {{2}^{2}}\times {{5}^{2}}\times 2}\] .
\[=2\times 2\times 5\times \sqrt{2}\]
\[=20\sqrt{2}\]
Now, $18=2\times 3\times 3$ . So, $\sqrt{18}=\sqrt{2\times 3\times 3}$ . We will express the factors as a product of squares of prime numbers. So, $\sqrt{18}=\sqrt{{{3}^{2}}\times 2}$ .
$=3\sqrt{2}$
Now, we have the values of the square root of all the terms given in the expression. Now, we can find the value of the expression. The given expression is $\sqrt{72}+\sqrt{800}-\sqrt{18}$ . We have calculated the values of $\sqrt{72},\sqrt{800}$ and $\sqrt{18}$ as $20\sqrt{2}$ , $3\sqrt{2}$ , and $6\sqrt{2}$ respectively. Now, we will substitute the values of $\sqrt{72},\sqrt{800}$ and $\sqrt{18}$ in the given expression. On substituting the values of $\sqrt{72},\sqrt{800}$ and $\sqrt{18}$ in the given expression, we get:
$\sqrt{72}+\sqrt{800}-\sqrt{18}=6\sqrt{2}+20\sqrt{2}-3\sqrt{2}$
Now, we will take $\sqrt{2}$ common from all three terms. On taking $\sqrt{2}$ common from all three terms, we get $\sqrt{72}+\sqrt{800}-\sqrt{18}=\left( 6+20-3 \right)\sqrt{2}=23\sqrt{2}$.
Hence, the simplified value of the expression $\sqrt{72}+\sqrt{800}-\sqrt{18}$ is equal to $23\sqrt{2}$ .
Note: While evaluating the square root of a number, it is better to express the number as a product of its prime factors. This way, it will be easier to calculate the square root and there will be no confusion while evaluating the square root.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

State and prove Bernoullis theorem class 11 physics CBSE

What organs are located on the left side of your body class 11 biology CBSE

How many valence electrons does nitrogen have class 11 chemistry CBSE
