Answer

Verified

433.2k+ views

Hint: The given problem is related to the square root of numbers. Find the square root of the numbers by factorization and then use mathematical operations to evaluate the simplified value of the given expression.

Complete step-by-step answer:

We are asked to find the simplified value of $\sqrt{72}+\sqrt{800}-\sqrt{18}$. First, we will evaluate the value of each term, then find the simplified value of the expression. To find the value of each term, we will determine the value of the square root by factorization.

We know, $72=2\times 2\times 2\times 3\times 3$. So, $\sqrt{72}=\sqrt{2\times 2\times 2\times 3\times 3}$ . We will express the factors as a product of squares of prime numbers. So, $\sqrt{72}=\sqrt{{{2}^{2}}\times {{3}^{2}}\times 2}$.

$=2\times 3\times \sqrt{2}$

$=6\sqrt{2}$

Now, $800=2\times 2\times 2\times 2\times 2\times 5\times 5$ . So, $\sqrt{800}=\sqrt{2\times 2\times 2\times 2\times 2\times 5\times 5}$ . We will express the factors as a product of squares of prime numbers. So, \[\sqrt{800}=\sqrt{{{2}^{2}}\times {{2}^{2}}\times {{5}^{2}}\times 2}\] .

\[=2\times 2\times 5\times \sqrt{2}\]

\[=20\sqrt{2}\]

Now, $18=2\times 3\times 3$ . So, $\sqrt{18}=\sqrt{2\times 3\times 3}$ . We will express the factors as a product of squares of prime numbers. So, $\sqrt{18}=\sqrt{{{3}^{2}}\times 2}$ .

$=3\sqrt{2}$

Now, we have the values of the square root of all the terms given in the expression. Now, we can find the value of the expression. The given expression is $\sqrt{72}+\sqrt{800}-\sqrt{18}$ . We have calculated the values of $\sqrt{72},\sqrt{800}$ and $\sqrt{18}$ as $20\sqrt{2}$ , $3\sqrt{2}$ , and $6\sqrt{2}$ respectively. Now, we will substitute the values of $\sqrt{72},\sqrt{800}$ and $\sqrt{18}$ in the given expression. On substituting the values of $\sqrt{72},\sqrt{800}$ and $\sqrt{18}$ in the given expression, we get:

$\sqrt{72}+\sqrt{800}-\sqrt{18}=6\sqrt{2}+20\sqrt{2}-3\sqrt{2}$

Now, we will take $\sqrt{2}$ common from all three terms. On taking $\sqrt{2}$ common from all three terms, we get $\sqrt{72}+\sqrt{800}-\sqrt{18}=\left( 6+20-3 \right)\sqrt{2}=23\sqrt{2}$.

Hence, the simplified value of the expression $\sqrt{72}+\sqrt{800}-\sqrt{18}$ is equal to $23\sqrt{2}$ .

Note: While evaluating the square root of a number, it is better to express the number as a product of its prime factors. This way, it will be easier to calculate the square root and there will be no confusion while evaluating the square root.

Complete step-by-step answer:

We are asked to find the simplified value of $\sqrt{72}+\sqrt{800}-\sqrt{18}$. First, we will evaluate the value of each term, then find the simplified value of the expression. To find the value of each term, we will determine the value of the square root by factorization.

We know, $72=2\times 2\times 2\times 3\times 3$. So, $\sqrt{72}=\sqrt{2\times 2\times 2\times 3\times 3}$ . We will express the factors as a product of squares of prime numbers. So, $\sqrt{72}=\sqrt{{{2}^{2}}\times {{3}^{2}}\times 2}$.

$=2\times 3\times \sqrt{2}$

$=6\sqrt{2}$

Now, $800=2\times 2\times 2\times 2\times 2\times 5\times 5$ . So, $\sqrt{800}=\sqrt{2\times 2\times 2\times 2\times 2\times 5\times 5}$ . We will express the factors as a product of squares of prime numbers. So, \[\sqrt{800}=\sqrt{{{2}^{2}}\times {{2}^{2}}\times {{5}^{2}}\times 2}\] .

\[=2\times 2\times 5\times \sqrt{2}\]

\[=20\sqrt{2}\]

Now, $18=2\times 3\times 3$ . So, $\sqrt{18}=\sqrt{2\times 3\times 3}$ . We will express the factors as a product of squares of prime numbers. So, $\sqrt{18}=\sqrt{{{3}^{2}}\times 2}$ .

$=3\sqrt{2}$

Now, we have the values of the square root of all the terms given in the expression. Now, we can find the value of the expression. The given expression is $\sqrt{72}+\sqrt{800}-\sqrt{18}$ . We have calculated the values of $\sqrt{72},\sqrt{800}$ and $\sqrt{18}$ as $20\sqrt{2}$ , $3\sqrt{2}$ , and $6\sqrt{2}$ respectively. Now, we will substitute the values of $\sqrt{72},\sqrt{800}$ and $\sqrt{18}$ in the given expression. On substituting the values of $\sqrt{72},\sqrt{800}$ and $\sqrt{18}$ in the given expression, we get:

$\sqrt{72}+\sqrt{800}-\sqrt{18}=6\sqrt{2}+20\sqrt{2}-3\sqrt{2}$

Now, we will take $\sqrt{2}$ common from all three terms. On taking $\sqrt{2}$ common from all three terms, we get $\sqrt{72}+\sqrt{800}-\sqrt{18}=\left( 6+20-3 \right)\sqrt{2}=23\sqrt{2}$.

Hence, the simplified value of the expression $\sqrt{72}+\sqrt{800}-\sqrt{18}$ is equal to $23\sqrt{2}$ .

Note: While evaluating the square root of a number, it is better to express the number as a product of its prime factors. This way, it will be easier to calculate the square root and there will be no confusion while evaluating the square root.

Recently Updated Pages

Assertion The resistivity of a semiconductor increases class 13 physics CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

How do you arrange NH4 + BF3 H2O C2H2 in increasing class 11 chemistry CBSE

Is H mCT and q mCT the same thing If so which is more class 11 chemistry CBSE

What are the possible quantum number for the last outermost class 11 chemistry CBSE

Is C2 paramagnetic or diamagnetic class 11 chemistry CBSE

Trending doubts

Difference Between Plant Cell and Animal Cell

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Differentiate between internal fertilization and external class 12 biology CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE

Which type of ovule is found in pea A Hemianatropous class 12 biology CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Scion is a term in relation to ALayering BCutting CGrafting class 12 biology CBSE