
The sides of a triangle are 4, 5 and 6 cm. the area of the triangle is equal to
(a) $\dfrac{15}{4}c{{m}^{2}}$
(b) $\dfrac{15}{4}\sqrt{7}c{{m}^{2}}$
(c) $\dfrac{4}{15}c{{m}^{2}}$
(d) None of these
Answer
586.8k+ views
Hint: Here, we are given that the lengths of the three sides of the triangle are 4, 5 and 6 cm. So, for finding the area of the triangle, we will use Heron’s formula, according to this formula area of a triangle whose sides are of length a, b and c units is give as $Area=\sqrt{s\left( s-a \right)\left( s-b \right)\left( s-c \right)}$, here ‘s’ is the semi-perimeter of the triangle given as $s=\dfrac{a+b+c}{2}$.
Complete step-by-step answer:
Since, the lengths of the three sides of the triangle are 4 cm, 5 cm and 6 cm. So, the semi-perimeter of this triangle will be:
$s=\dfrac{\left( 4+5+6 \right)cm}{2}=\dfrac{15}{2}cm$
We know that according to Heron’s formula the area of a triangle whose lengths of all three sides are known is given as:
$Area=\sqrt{s\left( s-a \right)\left( s-b \right)\left( s-c \right)}..........\left( 1 \right)$
We have, a = 4 cm, b = 5 cm and c = 6 cm. On substituting all the values in equation (1), we get:
\[\begin{align}
& Area=\sqrt{\dfrac{15}{2}\left( \dfrac{15}{2}-4 \right)\left( \dfrac{15}{2}-5 \right)\left( \dfrac{15}{2}-6 \right)} \\
& \Rightarrow Area=\sqrt{\dfrac{15}{2}\times \left( \dfrac{15-8}{2} \right)\times \left( \dfrac{15-10}{2} \right)\times \left( \dfrac{15-12}{2} \right)} \\
& \Rightarrow Area=\sqrt{\dfrac{15}{2}\times \dfrac{7}{2}\times \dfrac{5}{2}\times \dfrac{3}{2}} \\
& \Rightarrow Area=\sqrt{\dfrac{15}{2}\times \dfrac{15}{2}\times \dfrac{7}{2}\times \dfrac{1}{2}} \\
& \Rightarrow Area=\dfrac{15}{2}\sqrt{\dfrac{7}{4}} \\
& \Rightarrow Area=\dfrac{15}{4}\sqrt{7}c{{m}^{2}} \\
\end{align}\]
So, the area of the triangle is $\dfrac{15}{4}\sqrt{7}c{{m}^{2}}$.
Hence, option (d) is the correct answer.
Note: Students should note that by the word semi-perimeter, we mean half of the perimeter of the triangle. So, for finding the semi-perimeter we just divide the perimeter of the triangle by 2. Calculations which are performed under square root should be carefully done like here we multiplied 5 and 3 which are in the square root to make it 15, so that we can take it out of the square root.
Complete step-by-step answer:
Since, the lengths of the three sides of the triangle are 4 cm, 5 cm and 6 cm. So, the semi-perimeter of this triangle will be:
$s=\dfrac{\left( 4+5+6 \right)cm}{2}=\dfrac{15}{2}cm$
We know that according to Heron’s formula the area of a triangle whose lengths of all three sides are known is given as:
$Area=\sqrt{s\left( s-a \right)\left( s-b \right)\left( s-c \right)}..........\left( 1 \right)$
We have, a = 4 cm, b = 5 cm and c = 6 cm. On substituting all the values in equation (1), we get:
\[\begin{align}
& Area=\sqrt{\dfrac{15}{2}\left( \dfrac{15}{2}-4 \right)\left( \dfrac{15}{2}-5 \right)\left( \dfrac{15}{2}-6 \right)} \\
& \Rightarrow Area=\sqrt{\dfrac{15}{2}\times \left( \dfrac{15-8}{2} \right)\times \left( \dfrac{15-10}{2} \right)\times \left( \dfrac{15-12}{2} \right)} \\
& \Rightarrow Area=\sqrt{\dfrac{15}{2}\times \dfrac{7}{2}\times \dfrac{5}{2}\times \dfrac{3}{2}} \\
& \Rightarrow Area=\sqrt{\dfrac{15}{2}\times \dfrac{15}{2}\times \dfrac{7}{2}\times \dfrac{1}{2}} \\
& \Rightarrow Area=\dfrac{15}{2}\sqrt{\dfrac{7}{4}} \\
& \Rightarrow Area=\dfrac{15}{4}\sqrt{7}c{{m}^{2}} \\
\end{align}\]
So, the area of the triangle is $\dfrac{15}{4}\sqrt{7}c{{m}^{2}}$.
Hence, option (d) is the correct answer.
Note: Students should note that by the word semi-perimeter, we mean half of the perimeter of the triangle. So, for finding the semi-perimeter we just divide the perimeter of the triangle by 2. Calculations which are performed under square root should be carefully done like here we multiplied 5 and 3 which are in the square root to make it 15, so that we can take it out of the square root.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
The shortest day of the year in India

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

