
The root mean square speed of the hydrogen molecule of an ideal hydrogen gas kept in a gas chamber at \[{{0}^{0}}\]C is \[\text{3180 metre/second}\]. The pressure on the hydrogen gas is: (density of hydrogen gas is \[8.99\times {{10}^{-2}}kg/{{m}^{3}}\],\[\text{1 atm=1}\text{.01 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{5}}}\text{N/}{{\text{m}}^{\text{2}}}\]).
A) 1.0 atmosphere
B) 1.5 atmosphere
C) 2.0 atmosphere
D) 3.0 atmosphere
Answer
580.2k+ views
Hint: The root mean square speed denoted by ${{\text{V}}_{\text{rms}}}$ is directly proportional to the pressure on the gas P and inversely related to the density of gas in the chamber (d).
Complete answer:
Root mean square speed ${{\text{V}}_{\text{rms}}}$ is the square root of the average of the square of the speed. The RMS value is used for the gas sample as the net speed is zero but the particles are moving in all directions.
-We are given with the following data;
The root mean square speed of ${{\text{H}}_{\text{2}}}$ at ${{0}^{0}}\text{c}$ is $\text{3180m/s}$
The density of hydrogen gas kept in the chamber is $\text{8}\text{.99 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{-2}}}\text{Kg/}{{\text{m}}^{\text{3}}}$
$\text{1 atm=1}\text{.01 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{5}}}\text{N/}{{\text{m}}^{\text{2}}}$
-The root means square speed is related to the density of ${{\text{H}}_{\text{2}}}$ gas kept in the chamber and pressure on the gas. The relation between ${{\text{V}}_{\text{rms}}}$, P and d is given as,
${{\text{V}}_{\text{rms}}}\text{=}\sqrt{\dfrac{\text{3P}}{\text{d}}}$----------- (1)
Where,
${{\text{V}}_{\text{rms}}}$=root mean square speed
P=pressure on ${{\text{H}}_{\text{2}}}$ gas
d=density of ${{\text{H}}_{\text{2}}}$ gas
-Let's substitute the values given in equation (1). We get,
${{\text{V}}_{\text{rms}}}\text{=}\sqrt{\dfrac{\text{3P}}{\text{d}}}$
⟹\[\]\[\text{3180m/s=}\sqrt{\dfrac{\text{3P}}{\text{8}\text{.99 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{-2}}}\text{Kg/}{{\text{m}}^{\text{3}}}}}\]
On squaring on both sides. We get,
⟹\[{{\text{(3180m/s)}}^{2}}\text{=}{{\left( \sqrt{\dfrac{\text{3P}}{\text{8}\text{.99 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{-2}}}\text{Kg/}{{\text{m}}^{\text{3}}}}} \right)}^{2}}\]
⟹\[{{\text{(3180m/s)}}^{2}}\text{=}\dfrac{\text{3P}}{\text{8}\text{.99 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{-2}}}\text{Kg/}{{\text{m}}^{\text{3}}}}\]
Rearrange the above equation for pressure P.
⟹\[\text{P=}\dfrac{{{\text{(3180m/s)}}^{\text{2}}}\text{ }\!\!\times\!\!\text{ 8}\text{.99 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{-2}}}\text{Kg/}{{\text{m}}^{\text{3}}}}{\text{3}}\]
⟹\[\text{P=}\dfrac{{{\text{(3180)}}^{\text{2}}}\text{ }\!\!\times\!\!\text{ 8}\text{.99 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{-2}}}\frac{Kg}{{{m}^{2}}}\dfrac{m}{{{s}^{2}}}}{\text{3}}\]
Since we know that \[\text{Kg}\dfrac{\text{m}}{{{\text{s}}^{\text{2}}}}\text{=N}\]
The above equation become,
⟹\[\text{P=}\dfrac{{{\text{(3180)}}^{\text{2}}}\text{ }\!\!\times\!\!\text{ 8}\text{.99 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{-2}}}\dfrac{\text{N}}{{{\text{m}}^{\text{2}}}}}{\text{3}}\]---------- (2)
We know that, $\text{1 atm=1}\text{.01 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{5}}}\text{N/}{{\text{m}}^{\text{2}}}$
Let’s, divide equation (2) by $\text{1}\text{.01 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{5}}}\text{N/}{{\text{m}}^{\text{2}}}$. We get,
⟹\[\text{P=}\dfrac{\text{9}\text{.09 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{5}}}}{\text{3 }\!\!\times\!\!\text{ 1}\text{.01 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{5}}}}\text{atm}\]
⟹$\text{P=3}\text{.0atm}$
So, the correct answer is “Option D”.
Additional Information:
According to the kinetic theory of gases, particles are in a state of random motion. Particles move at a different speed and collide and change direction. We use the term speed to represent the movement of particles. We cannot measure the speed of the individual particle, so we often use the term’ average’. Particles can have opposite directions. Since gas particles are random motion we cannot say about how many particles are moving in which direction. Thus the average speed is always taken as zero considering that for every moving particle there is one which moves in the opposite direction.
Thus we use the alternate method to get the velocities which are by squaring the velocities and taking the square root. Since these values are free from the direction we referred to it as average speed. The root means square velocity for the particle is the square root of average speed squared of molecules in gas.
\[{{\text{V}}_{\text{rms}}}\text{=}\sqrt{\dfrac{\text{3RT}}{\text{M}}}\]
Where, \[{{\text{V}}_{\text{rms}}}\] is the root mean square of the speed, M is the molecular mass of gas in $\text{Kg/mole}$, R is gas constant and T is the temperature in kelvin.
Note: The root means square speed considers both molecular weight (M) and temperature (T). Two of these factors are directly related to the kinetic energy of gas particles. Students should not get confused with the velocity and speed. The RMS calculation gives the root mean square speed. It does not give us velocity. Velocity is a vector quantity that has both direction and magnitude. But RMS calculation only gives the magnitude or speed of the particles.
Complete answer:
Root mean square speed ${{\text{V}}_{\text{rms}}}$ is the square root of the average of the square of the speed. The RMS value is used for the gas sample as the net speed is zero but the particles are moving in all directions.
-We are given with the following data;
The root mean square speed of ${{\text{H}}_{\text{2}}}$ at ${{0}^{0}}\text{c}$ is $\text{3180m/s}$
The density of hydrogen gas kept in the chamber is $\text{8}\text{.99 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{-2}}}\text{Kg/}{{\text{m}}^{\text{3}}}$
$\text{1 atm=1}\text{.01 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{5}}}\text{N/}{{\text{m}}^{\text{2}}}$
-The root means square speed is related to the density of ${{\text{H}}_{\text{2}}}$ gas kept in the chamber and pressure on the gas. The relation between ${{\text{V}}_{\text{rms}}}$, P and d is given as,
${{\text{V}}_{\text{rms}}}\text{=}\sqrt{\dfrac{\text{3P}}{\text{d}}}$----------- (1)
Where,
${{\text{V}}_{\text{rms}}}$=root mean square speed
P=pressure on ${{\text{H}}_{\text{2}}}$ gas
d=density of ${{\text{H}}_{\text{2}}}$ gas
-Let's substitute the values given in equation (1). We get,
${{\text{V}}_{\text{rms}}}\text{=}\sqrt{\dfrac{\text{3P}}{\text{d}}}$
⟹\[\]\[\text{3180m/s=}\sqrt{\dfrac{\text{3P}}{\text{8}\text{.99 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{-2}}}\text{Kg/}{{\text{m}}^{\text{3}}}}}\]
On squaring on both sides. We get,
⟹\[{{\text{(3180m/s)}}^{2}}\text{=}{{\left( \sqrt{\dfrac{\text{3P}}{\text{8}\text{.99 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{-2}}}\text{Kg/}{{\text{m}}^{\text{3}}}}} \right)}^{2}}\]
⟹\[{{\text{(3180m/s)}}^{2}}\text{=}\dfrac{\text{3P}}{\text{8}\text{.99 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{-2}}}\text{Kg/}{{\text{m}}^{\text{3}}}}\]
Rearrange the above equation for pressure P.
⟹\[\text{P=}\dfrac{{{\text{(3180m/s)}}^{\text{2}}}\text{ }\!\!\times\!\!\text{ 8}\text{.99 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{-2}}}\text{Kg/}{{\text{m}}^{\text{3}}}}{\text{3}}\]
⟹\[\text{P=}\dfrac{{{\text{(3180)}}^{\text{2}}}\text{ }\!\!\times\!\!\text{ 8}\text{.99 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{-2}}}\frac{Kg}{{{m}^{2}}}\dfrac{m}{{{s}^{2}}}}{\text{3}}\]
Since we know that \[\text{Kg}\dfrac{\text{m}}{{{\text{s}}^{\text{2}}}}\text{=N}\]
The above equation become,
⟹\[\text{P=}\dfrac{{{\text{(3180)}}^{\text{2}}}\text{ }\!\!\times\!\!\text{ 8}\text{.99 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{-2}}}\dfrac{\text{N}}{{{\text{m}}^{\text{2}}}}}{\text{3}}\]---------- (2)
We know that, $\text{1 atm=1}\text{.01 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{5}}}\text{N/}{{\text{m}}^{\text{2}}}$
Let’s, divide equation (2) by $\text{1}\text{.01 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{5}}}\text{N/}{{\text{m}}^{\text{2}}}$. We get,
⟹\[\text{P=}\dfrac{\text{9}\text{.09 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{5}}}}{\text{3 }\!\!\times\!\!\text{ 1}\text{.01 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{5}}}}\text{atm}\]
⟹$\text{P=3}\text{.0atm}$
So, the correct answer is “Option D”.
Additional Information:
According to the kinetic theory of gases, particles are in a state of random motion. Particles move at a different speed and collide and change direction. We use the term speed to represent the movement of particles. We cannot measure the speed of the individual particle, so we often use the term’ average’. Particles can have opposite directions. Since gas particles are random motion we cannot say about how many particles are moving in which direction. Thus the average speed is always taken as zero considering that for every moving particle there is one which moves in the opposite direction.
Thus we use the alternate method to get the velocities which are by squaring the velocities and taking the square root. Since these values are free from the direction we referred to it as average speed. The root means square velocity for the particle is the square root of average speed squared of molecules in gas.
\[{{\text{V}}_{\text{rms}}}\text{=}\sqrt{\dfrac{\text{3RT}}{\text{M}}}\]
Where, \[{{\text{V}}_{\text{rms}}}\] is the root mean square of the speed, M is the molecular mass of gas in $\text{Kg/mole}$, R is gas constant and T is the temperature in kelvin.
Note: The root means square speed considers both molecular weight (M) and temperature (T). Two of these factors are directly related to the kinetic energy of gas particles. Students should not get confused with the velocity and speed. The RMS calculation gives the root mean square speed. It does not give us velocity. Velocity is a vector quantity that has both direction and magnitude. But RMS calculation only gives the magnitude or speed of the particles.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

