
The remainder obtained when \[1! + 2! + 3! + ........................100\] is divided by $240$ is
A. $153$
B. $154$
C. $155$
D. $156$
Answer
481.8k+ views
Hint: As we all are very aware of factorial so in this question we will firstly try to expand our initial factorial by using one simple property that is
\[n! = n \times \left( {n - 1} \right) \times \left( {n - 2} \right)............1\]
So, we will use this property to find the remainder by dividing it by \[240\].
Step by step solution:
So, firstly we need to find the sum of \[1! + 2! + 3! + ........................100\], then by dividing it by \[240\] we will get our result.
Now, we will expand the factorial
\[ = \dfrac{{(1) + (2 \times 1) + (3 \times 2 \times 1) + (4 \times 3 \times 2 \times 1) + (5 \times 4 \times 3 \times 2 \times 1) + (6 \times 5 \times 4 \times 3 \times 2 \times 1) + (7 \times 6!) + ...........100!}}{{240}}\]
Now, as we can see that before \[6\] any of the number is not divisible by \[240\] but when we divide
\[6!{\text{ }}from{\text{ }}240\], it get full divide without leaving any remainder that is
\[ = \dfrac{{153}}{{240}} + \dfrac{{720}}{{240}} + \dfrac{{7 \times 6!}}{{240}} + ....................\dfrac{{100!}}{{240}}\]
So, \[\dfrac{{720}}{{240}}\] is fully divisible and we get remainder 0 so after \[6\] all factorial must contain the term \[6\] there is no need to carry division forward, we will get the same result.
Now, if we see before \[6\] upto \[5!\] none of the factorial is divisible so this means that it leaves a remainder so by adding all the factorial before \[6\] we get value as \[153\] which is also written as remainder of this sum when divided by \[240\].
Note:
While dividing any factorial by any number to find remainder we must observe the pattern that is upto which place our factorial will start giving us remainder zero. Also, we know that the factorial of \[1!{\text{ }}is{\text{ }}1\], but \[0\] has also a value equal to \[1\].
\[n! = n \times \left( {n - 1} \right) \times \left( {n - 2} \right)............1\]
So, we will use this property to find the remainder by dividing it by \[240\].
Step by step solution:
So, firstly we need to find the sum of \[1! + 2! + 3! + ........................100\], then by dividing it by \[240\] we will get our result.
Now, we will expand the factorial
\[ = \dfrac{{(1) + (2 \times 1) + (3 \times 2 \times 1) + (4 \times 3 \times 2 \times 1) + (5 \times 4 \times 3 \times 2 \times 1) + (6 \times 5 \times 4 \times 3 \times 2 \times 1) + (7 \times 6!) + ...........100!}}{{240}}\]
Now, as we can see that before \[6\] any of the number is not divisible by \[240\] but when we divide
\[6!{\text{ }}from{\text{ }}240\], it get full divide without leaving any remainder that is
\[ = \dfrac{{153}}{{240}} + \dfrac{{720}}{{240}} + \dfrac{{7 \times 6!}}{{240}} + ....................\dfrac{{100!}}{{240}}\]
So, \[\dfrac{{720}}{{240}}\] is fully divisible and we get remainder 0 so after \[6\] all factorial must contain the term \[6\] there is no need to carry division forward, we will get the same result.
Now, if we see before \[6\] upto \[5!\] none of the factorial is divisible so this means that it leaves a remainder so by adding all the factorial before \[6\] we get value as \[153\] which is also written as remainder of this sum when divided by \[240\].
Note:
While dividing any factorial by any number to find remainder we must observe the pattern that is upto which place our factorial will start giving us remainder zero. Also, we know that the factorial of \[1!{\text{ }}is{\text{ }}1\], but \[0\] has also a value equal to \[1\].
Recently Updated Pages
Power set of empty set has exactly subset class 11 maths CBSE

While covering a distance of 30km Ajeet takes 2 ho-class-11-maths-CBSE

Sanjeevani booti brought about by Lord Hanuman to cure class 11 biology CBSE

A police jeep on patrol duty on a national highway class 11 physics CBSE

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Trending doubts
1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

How much is 23 kg in pounds class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Whales are warmblooded animals which live in cold seas class 11 biology CBSE
