
The reference standard used for defining atomic mass is:
A.) $H - 1$
B.) $C - 12$
C.) $C - 13$
D.) $C - 14$
Answer
466.5k+ views
Hint: The masses of the individual atoms are very-very small such that it makes difficulty in measurements and it increases complexity while measuring in grams therefore, the comparisons of masses is easier when we choose a reference standard of an element from which all other masses could be compared.
Complete step by step answer:
As we know that we use a standard reference for the calculation of atomic masses of all elements. Therefore, scientists have decided the carbon nucleus as the standard reference from which we can compare masses of all other elements. Therefore, one atom of carbon $ - 12$ is assigned a mass of $12\;amu$ where $amu$ is the atomic mass unit. Therefore, the masses of all other elements are compared with atomic mass units.
Here, one atomic mass unit can be defined as the mass which is equal to the mass of one twelfth of an atom of carbon $ - 12$ that is the most common isotope of carbon atom. The value of one atomic mass unit is equal to $1.66 \times {10^{ - 24}}g$. As the reference standard used for defining atomic mass is carbon $ - 12$.
Hence, option B.) is the correct answer.
Note:
Always remember that if an atom has a mass in grams equal to the one-twelfth of the mass of carbon $ - 12$ atom then that element would have a relative mass of $1amu$(one atomic mass unit). As we know, the mass of a carbon atom in grams is $1.99 \times {10^{ - 23}}g$. And mass of hydrogen in grams is $0.1673 \times {10^{ - 23}}g$ which is approx. equal to the one-twelfth of the mass of the carbon atom. Hence, the mass of hydrogen in $amu$ is $1\;amu$.
Complete step by step answer:
As we know that we use a standard reference for the calculation of atomic masses of all elements. Therefore, scientists have decided the carbon nucleus as the standard reference from which we can compare masses of all other elements. Therefore, one atom of carbon $ - 12$ is assigned a mass of $12\;amu$ where $amu$ is the atomic mass unit. Therefore, the masses of all other elements are compared with atomic mass units.
Here, one atomic mass unit can be defined as the mass which is equal to the mass of one twelfth of an atom of carbon $ - 12$ that is the most common isotope of carbon atom. The value of one atomic mass unit is equal to $1.66 \times {10^{ - 24}}g$. As the reference standard used for defining atomic mass is carbon $ - 12$.
Hence, option B.) is the correct answer.
Note:
Always remember that if an atom has a mass in grams equal to the one-twelfth of the mass of carbon $ - 12$ atom then that element would have a relative mass of $1amu$(one atomic mass unit). As we know, the mass of a carbon atom in grams is $1.99 \times {10^{ - 23}}g$. And mass of hydrogen in grams is $0.1673 \times {10^{ - 23}}g$ which is approx. equal to the one-twelfth of the mass of the carbon atom. Hence, the mass of hydrogen in $amu$ is $1\;amu$.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

State and prove Bernoullis theorem class 11 physics CBSE

What organs are located on the left side of your body class 11 biology CBSE

How many valence electrons does nitrogen have class 11 chemistry CBSE
