
The real and imaginary parts of $\sqrt{i}$ are, where $i=\sqrt{-1}$
[a] $1-\dfrac{1}{\sqrt{2}},\dfrac{-1}{\sqrt{2}}$ respectively
[b] $1-\dfrac{1}{\sqrt{2}},\dfrac{1}{\sqrt{2}}$ respectively
[c] $1+\dfrac{1}{\sqrt{2}},\dfrac{1}{\sqrt{2}}$ respectively
[d] $1+\dfrac{1}{\sqrt{2}},\dfrac{-1}{\sqrt{2}}$ respectively
Answer
603.3k+ views
Hint: Assume that $\sqrt{i}=a+ib$. Square both sides and use the fact that ${{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$. Compare the real and imaginary parts and hence form two equations in two variables a and b. Solve the equations and hence find the value of a and b. Hence find the value of the real and imaginary part of $1+\sqrt{i}$. Alternatively, use the fact that $i={{e}^{i\dfrac{\pi }{2}}}={{e}^{i\dfrac{5\pi }{2}}}$. Use the fact that ${{e}^{i\theta }}=\cos \theta +i\sin \theta $ and hence find the real and imaginary parts of $1+\sqrt{i}$.
Complete step-by-step solution
Let $\sqrt{i}=a+ib,a,b\in \mathbb{R}$
Squaring both sides, we get
$i={{\left( a+ib \right)}^{2}}$
We know that ${{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$
Hence, we have
$i={{a}^{2}}+{{\left( ib \right)}^{2}}+2a\left( ib \right)$
We know that ${{i}^{2}}=-1$. Hence, we get
$i={{a}^{2}}-{{b}^{2}}+i2ab$
Comparing real parts, we get
$\begin{align}
& {{a}^{2}}-{{b}^{2}}=0 \\
& \Rightarrow a=\pm b\text{ }\left( i \right) \\
\end{align}$
Comparing imaginary parts, we get
$2ab=1$
Substituting the value of a from equation (i), we get
$\begin{align}
& \pm 2{{b}^{2}}=1 \\
& \Rightarrow {{b}^{2}}=\pm \dfrac{1}{2} \\
\end{align}$
Since $b\in \mathbb{R}$, we have ${{b}^{2}}\ge 0$
Hence we have
${{b}^{2}}=-\dfrac{1}{2}$ is rejected.
Hence, we have
$\begin{align}
& {{b}^{2}}=\dfrac{1}{2} \\
& \Rightarrow b=\pm \dfrac{1}{\sqrt{2}} \\
\end{align}$
Hence, from equation (i), we get
$a=\pm \dfrac{1}{\sqrt{2}}$
Hence, we have
$\sqrt{i}=\pm \dfrac{1}{\sqrt{2}}\pm i\dfrac{1}{\sqrt{2}}=\pm \dfrac{1}{\sqrt{2}}\left( 1+i \right)$
Hence, we have
$1+\sqrt{i}=1\pm \dfrac{1}{\sqrt{2}}+i\left( \pm \dfrac{1}{\sqrt{2}} \right)$
Hence, we have $\operatorname{Re}\left( 1+\sqrt{i} \right)=1+\dfrac{1}{\sqrt{2}},\operatorname{Im}\left( 1+\sqrt{i} \right)=\dfrac{1}{\sqrt{2}}\text{ or }\operatorname{Re}\left( 1+\sqrt{i} \right)=1-\dfrac{1}{\sqrt{2}},\operatorname{Im}\left( 1+\sqrt{i} \right)=-\dfrac{1}{\sqrt{2}}$
Hence options [a] and [c] are correct.
Note: Alternative solution: Using Euler’s identity:
We know that ${{e}^{i\theta }}=\cos \theta +i\sin \theta $
Hence, we have
$\begin{align}
& {{e}^{i\dfrac{\pi }{2}}}=\cos \dfrac{\pi }{2}+i\sin \dfrac{\pi }{2}=i \\
& {{e}^{i\dfrac{5\pi }{2}}}=\cos \dfrac{5\pi }{2}+i\sin \dfrac{5\pi }{2}=i \\
\end{align}$
Hence, we have
$\sqrt{i}={{\left( {{e}^{\dfrac{i\pi }{2}}} \right)}^{\dfrac{1}{2}}}={{e}^{i\dfrac{\pi }{4}}}=\cos \dfrac{\pi }{4}+i\sin \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}+\dfrac{i}{\sqrt{2}}$
Also, we have
$\sqrt{i}={{\left( {{e}^{i\dfrac{5\pi }{2}}} \right)}^{\dfrac{1}{2}}}={{e}^{\dfrac{5\pi }{4}}}=\cos \dfrac{5\pi }{4}+i\sin \dfrac{5\pi }{4}=-\dfrac{1}{\sqrt{2}}-\dfrac{i}{\sqrt{2}}$
Hence, we have
$\sqrt{i}=\pm \dfrac{1}{\sqrt{2}}\pm \dfrac{i}{\sqrt{2}}$, which is the same as obtained above.
Hence following a similar procedure as above, we get
$\operatorname{Re}\left( 1+\sqrt{i} \right)=1+\dfrac{1}{\sqrt{2}},\operatorname{Im}\left( 1+\sqrt{i} \right)=\dfrac{1}{\sqrt{2}}\text{ or }\operatorname{Re}\left( 1+\sqrt{i} \right)=1-\dfrac{1}{\sqrt{2}},\operatorname{Im}\left( 1+\sqrt{i} \right)=-\dfrac{1}{\sqrt{2}}$
Hence options [a] and [c] are correct.
Complete step-by-step solution
Let $\sqrt{i}=a+ib,a,b\in \mathbb{R}$
Squaring both sides, we get
$i={{\left( a+ib \right)}^{2}}$
We know that ${{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$
Hence, we have
$i={{a}^{2}}+{{\left( ib \right)}^{2}}+2a\left( ib \right)$
We know that ${{i}^{2}}=-1$. Hence, we get
$i={{a}^{2}}-{{b}^{2}}+i2ab$
Comparing real parts, we get
$\begin{align}
& {{a}^{2}}-{{b}^{2}}=0 \\
& \Rightarrow a=\pm b\text{ }\left( i \right) \\
\end{align}$
Comparing imaginary parts, we get
$2ab=1$
Substituting the value of a from equation (i), we get
$\begin{align}
& \pm 2{{b}^{2}}=1 \\
& \Rightarrow {{b}^{2}}=\pm \dfrac{1}{2} \\
\end{align}$
Since $b\in \mathbb{R}$, we have ${{b}^{2}}\ge 0$
Hence we have
${{b}^{2}}=-\dfrac{1}{2}$ is rejected.
Hence, we have
$\begin{align}
& {{b}^{2}}=\dfrac{1}{2} \\
& \Rightarrow b=\pm \dfrac{1}{\sqrt{2}} \\
\end{align}$
Hence, from equation (i), we get
$a=\pm \dfrac{1}{\sqrt{2}}$
Hence, we have
$\sqrt{i}=\pm \dfrac{1}{\sqrt{2}}\pm i\dfrac{1}{\sqrt{2}}=\pm \dfrac{1}{\sqrt{2}}\left( 1+i \right)$
Hence, we have
$1+\sqrt{i}=1\pm \dfrac{1}{\sqrt{2}}+i\left( \pm \dfrac{1}{\sqrt{2}} \right)$
Hence, we have $\operatorname{Re}\left( 1+\sqrt{i} \right)=1+\dfrac{1}{\sqrt{2}},\operatorname{Im}\left( 1+\sqrt{i} \right)=\dfrac{1}{\sqrt{2}}\text{ or }\operatorname{Re}\left( 1+\sqrt{i} \right)=1-\dfrac{1}{\sqrt{2}},\operatorname{Im}\left( 1+\sqrt{i} \right)=-\dfrac{1}{\sqrt{2}}$
Hence options [a] and [c] are correct.
Note: Alternative solution: Using Euler’s identity:
We know that ${{e}^{i\theta }}=\cos \theta +i\sin \theta $
Hence, we have
$\begin{align}
& {{e}^{i\dfrac{\pi }{2}}}=\cos \dfrac{\pi }{2}+i\sin \dfrac{\pi }{2}=i \\
& {{e}^{i\dfrac{5\pi }{2}}}=\cos \dfrac{5\pi }{2}+i\sin \dfrac{5\pi }{2}=i \\
\end{align}$
Hence, we have
$\sqrt{i}={{\left( {{e}^{\dfrac{i\pi }{2}}} \right)}^{\dfrac{1}{2}}}={{e}^{i\dfrac{\pi }{4}}}=\cos \dfrac{\pi }{4}+i\sin \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}+\dfrac{i}{\sqrt{2}}$
Also, we have
$\sqrt{i}={{\left( {{e}^{i\dfrac{5\pi }{2}}} \right)}^{\dfrac{1}{2}}}={{e}^{\dfrac{5\pi }{4}}}=\cos \dfrac{5\pi }{4}+i\sin \dfrac{5\pi }{4}=-\dfrac{1}{\sqrt{2}}-\dfrac{i}{\sqrt{2}}$
Hence, we have
$\sqrt{i}=\pm \dfrac{1}{\sqrt{2}}\pm \dfrac{i}{\sqrt{2}}$, which is the same as obtained above.
Hence following a similar procedure as above, we get
$\operatorname{Re}\left( 1+\sqrt{i} \right)=1+\dfrac{1}{\sqrt{2}},\operatorname{Im}\left( 1+\sqrt{i} \right)=\dfrac{1}{\sqrt{2}}\text{ or }\operatorname{Re}\left( 1+\sqrt{i} \right)=1-\dfrac{1}{\sqrt{2}},\operatorname{Im}\left( 1+\sqrt{i} \right)=-\dfrac{1}{\sqrt{2}}$
Hence options [a] and [c] are correct.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

