
The real and imaginary parts of $\sqrt{i}$ are, where $i=\sqrt{-1}$
[a] $1-\dfrac{1}{\sqrt{2}},\dfrac{-1}{\sqrt{2}}$ respectively
[b] $1-\dfrac{1}{\sqrt{2}},\dfrac{1}{\sqrt{2}}$ respectively
[c] $1+\dfrac{1}{\sqrt{2}},\dfrac{1}{\sqrt{2}}$ respectively
[d] $1+\dfrac{1}{\sqrt{2}},\dfrac{-1}{\sqrt{2}}$ respectively
Answer
588.9k+ views
Hint: Assume that $\sqrt{i}=a+ib$. Square both sides and use the fact that ${{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$. Compare the real and imaginary parts and hence form two equations in two variables a and b. Solve the equations and hence find the value of a and b. Hence find the value of the real and imaginary part of $1+\sqrt{i}$. Alternatively, use the fact that $i={{e}^{i\dfrac{\pi }{2}}}={{e}^{i\dfrac{5\pi }{2}}}$. Use the fact that ${{e}^{i\theta }}=\cos \theta +i\sin \theta $ and hence find the real and imaginary parts of $1+\sqrt{i}$.
Complete step-by-step solution
Let $\sqrt{i}=a+ib,a,b\in \mathbb{R}$
Squaring both sides, we get
$i={{\left( a+ib \right)}^{2}}$
We know that ${{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$
Hence, we have
$i={{a}^{2}}+{{\left( ib \right)}^{2}}+2a\left( ib \right)$
We know that ${{i}^{2}}=-1$. Hence, we get
$i={{a}^{2}}-{{b}^{2}}+i2ab$
Comparing real parts, we get
$\begin{align}
& {{a}^{2}}-{{b}^{2}}=0 \\
& \Rightarrow a=\pm b\text{ }\left( i \right) \\
\end{align}$
Comparing imaginary parts, we get
$2ab=1$
Substituting the value of a from equation (i), we get
$\begin{align}
& \pm 2{{b}^{2}}=1 \\
& \Rightarrow {{b}^{2}}=\pm \dfrac{1}{2} \\
\end{align}$
Since $b\in \mathbb{R}$, we have ${{b}^{2}}\ge 0$
Hence we have
${{b}^{2}}=-\dfrac{1}{2}$ is rejected.
Hence, we have
$\begin{align}
& {{b}^{2}}=\dfrac{1}{2} \\
& \Rightarrow b=\pm \dfrac{1}{\sqrt{2}} \\
\end{align}$
Hence, from equation (i), we get
$a=\pm \dfrac{1}{\sqrt{2}}$
Hence, we have
$\sqrt{i}=\pm \dfrac{1}{\sqrt{2}}\pm i\dfrac{1}{\sqrt{2}}=\pm \dfrac{1}{\sqrt{2}}\left( 1+i \right)$
Hence, we have
$1+\sqrt{i}=1\pm \dfrac{1}{\sqrt{2}}+i\left( \pm \dfrac{1}{\sqrt{2}} \right)$
Hence, we have $\operatorname{Re}\left( 1+\sqrt{i} \right)=1+\dfrac{1}{\sqrt{2}},\operatorname{Im}\left( 1+\sqrt{i} \right)=\dfrac{1}{\sqrt{2}}\text{ or }\operatorname{Re}\left( 1+\sqrt{i} \right)=1-\dfrac{1}{\sqrt{2}},\operatorname{Im}\left( 1+\sqrt{i} \right)=-\dfrac{1}{\sqrt{2}}$
Hence options [a] and [c] are correct.
Note: Alternative solution: Using Euler’s identity:
We know that ${{e}^{i\theta }}=\cos \theta +i\sin \theta $
Hence, we have
$\begin{align}
& {{e}^{i\dfrac{\pi }{2}}}=\cos \dfrac{\pi }{2}+i\sin \dfrac{\pi }{2}=i \\
& {{e}^{i\dfrac{5\pi }{2}}}=\cos \dfrac{5\pi }{2}+i\sin \dfrac{5\pi }{2}=i \\
\end{align}$
Hence, we have
$\sqrt{i}={{\left( {{e}^{\dfrac{i\pi }{2}}} \right)}^{\dfrac{1}{2}}}={{e}^{i\dfrac{\pi }{4}}}=\cos \dfrac{\pi }{4}+i\sin \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}+\dfrac{i}{\sqrt{2}}$
Also, we have
$\sqrt{i}={{\left( {{e}^{i\dfrac{5\pi }{2}}} \right)}^{\dfrac{1}{2}}}={{e}^{\dfrac{5\pi }{4}}}=\cos \dfrac{5\pi }{4}+i\sin \dfrac{5\pi }{4}=-\dfrac{1}{\sqrt{2}}-\dfrac{i}{\sqrt{2}}$
Hence, we have
$\sqrt{i}=\pm \dfrac{1}{\sqrt{2}}\pm \dfrac{i}{\sqrt{2}}$, which is the same as obtained above.
Hence following a similar procedure as above, we get
$\operatorname{Re}\left( 1+\sqrt{i} \right)=1+\dfrac{1}{\sqrt{2}},\operatorname{Im}\left( 1+\sqrt{i} \right)=\dfrac{1}{\sqrt{2}}\text{ or }\operatorname{Re}\left( 1+\sqrt{i} \right)=1-\dfrac{1}{\sqrt{2}},\operatorname{Im}\left( 1+\sqrt{i} \right)=-\dfrac{1}{\sqrt{2}}$
Hence options [a] and [c] are correct.
Complete step-by-step solution
Let $\sqrt{i}=a+ib,a,b\in \mathbb{R}$
Squaring both sides, we get
$i={{\left( a+ib \right)}^{2}}$
We know that ${{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$
Hence, we have
$i={{a}^{2}}+{{\left( ib \right)}^{2}}+2a\left( ib \right)$
We know that ${{i}^{2}}=-1$. Hence, we get
$i={{a}^{2}}-{{b}^{2}}+i2ab$
Comparing real parts, we get
$\begin{align}
& {{a}^{2}}-{{b}^{2}}=0 \\
& \Rightarrow a=\pm b\text{ }\left( i \right) \\
\end{align}$
Comparing imaginary parts, we get
$2ab=1$
Substituting the value of a from equation (i), we get
$\begin{align}
& \pm 2{{b}^{2}}=1 \\
& \Rightarrow {{b}^{2}}=\pm \dfrac{1}{2} \\
\end{align}$
Since $b\in \mathbb{R}$, we have ${{b}^{2}}\ge 0$
Hence we have
${{b}^{2}}=-\dfrac{1}{2}$ is rejected.
Hence, we have
$\begin{align}
& {{b}^{2}}=\dfrac{1}{2} \\
& \Rightarrow b=\pm \dfrac{1}{\sqrt{2}} \\
\end{align}$
Hence, from equation (i), we get
$a=\pm \dfrac{1}{\sqrt{2}}$
Hence, we have
$\sqrt{i}=\pm \dfrac{1}{\sqrt{2}}\pm i\dfrac{1}{\sqrt{2}}=\pm \dfrac{1}{\sqrt{2}}\left( 1+i \right)$
Hence, we have
$1+\sqrt{i}=1\pm \dfrac{1}{\sqrt{2}}+i\left( \pm \dfrac{1}{\sqrt{2}} \right)$
Hence, we have $\operatorname{Re}\left( 1+\sqrt{i} \right)=1+\dfrac{1}{\sqrt{2}},\operatorname{Im}\left( 1+\sqrt{i} \right)=\dfrac{1}{\sqrt{2}}\text{ or }\operatorname{Re}\left( 1+\sqrt{i} \right)=1-\dfrac{1}{\sqrt{2}},\operatorname{Im}\left( 1+\sqrt{i} \right)=-\dfrac{1}{\sqrt{2}}$
Hence options [a] and [c] are correct.
Note: Alternative solution: Using Euler’s identity:
We know that ${{e}^{i\theta }}=\cos \theta +i\sin \theta $
Hence, we have
$\begin{align}
& {{e}^{i\dfrac{\pi }{2}}}=\cos \dfrac{\pi }{2}+i\sin \dfrac{\pi }{2}=i \\
& {{e}^{i\dfrac{5\pi }{2}}}=\cos \dfrac{5\pi }{2}+i\sin \dfrac{5\pi }{2}=i \\
\end{align}$
Hence, we have
$\sqrt{i}={{\left( {{e}^{\dfrac{i\pi }{2}}} \right)}^{\dfrac{1}{2}}}={{e}^{i\dfrac{\pi }{4}}}=\cos \dfrac{\pi }{4}+i\sin \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}+\dfrac{i}{\sqrt{2}}$
Also, we have
$\sqrt{i}={{\left( {{e}^{i\dfrac{5\pi }{2}}} \right)}^{\dfrac{1}{2}}}={{e}^{\dfrac{5\pi }{4}}}=\cos \dfrac{5\pi }{4}+i\sin \dfrac{5\pi }{4}=-\dfrac{1}{\sqrt{2}}-\dfrac{i}{\sqrt{2}}$
Hence, we have
$\sqrt{i}=\pm \dfrac{1}{\sqrt{2}}\pm \dfrac{i}{\sqrt{2}}$, which is the same as obtained above.
Hence following a similar procedure as above, we get
$\operatorname{Re}\left( 1+\sqrt{i} \right)=1+\dfrac{1}{\sqrt{2}},\operatorname{Im}\left( 1+\sqrt{i} \right)=\dfrac{1}{\sqrt{2}}\text{ or }\operatorname{Re}\left( 1+\sqrt{i} \right)=1-\dfrac{1}{\sqrt{2}},\operatorname{Im}\left( 1+\sqrt{i} \right)=-\dfrac{1}{\sqrt{2}}$
Hence options [a] and [c] are correct.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

