
The real and imaginary parts of $\sqrt{i}$ are, where $i=\sqrt{-1}$
[a] $1-\dfrac{1}{\sqrt{2}},\dfrac{-1}{\sqrt{2}}$ respectively
[b] $1-\dfrac{1}{\sqrt{2}},\dfrac{1}{\sqrt{2}}$ respectively
[c] $1+\dfrac{1}{\sqrt{2}},\dfrac{1}{\sqrt{2}}$ respectively
[d] $1+\dfrac{1}{\sqrt{2}},\dfrac{-1}{\sqrt{2}}$ respectively
Answer
540.6k+ views
Hint: Assume that $\sqrt{i}=a+ib$. Square both sides and use the fact that ${{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$. Compare the real and imaginary parts and hence form two equations in two variables a and b. Solve the equations and hence find the value of a and b. Hence find the value of the real and imaginary part of $1+\sqrt{i}$. Alternatively, use the fact that $i={{e}^{i\dfrac{\pi }{2}}}={{e}^{i\dfrac{5\pi }{2}}}$. Use the fact that ${{e}^{i\theta }}=\cos \theta +i\sin \theta $ and hence find the real and imaginary parts of $1+\sqrt{i}$.
Complete step-by-step solution
Let $\sqrt{i}=a+ib,a,b\in \mathbb{R}$
Squaring both sides, we get
$i={{\left( a+ib \right)}^{2}}$
We know that ${{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$
Hence, we have
$i={{a}^{2}}+{{\left( ib \right)}^{2}}+2a\left( ib \right)$
We know that ${{i}^{2}}=-1$. Hence, we get
$i={{a}^{2}}-{{b}^{2}}+i2ab$
Comparing real parts, we get
$\begin{align}
& {{a}^{2}}-{{b}^{2}}=0 \\
& \Rightarrow a=\pm b\text{ }\left( i \right) \\
\end{align}$
Comparing imaginary parts, we get
$2ab=1$
Substituting the value of a from equation (i), we get
$\begin{align}
& \pm 2{{b}^{2}}=1 \\
& \Rightarrow {{b}^{2}}=\pm \dfrac{1}{2} \\
\end{align}$
Since $b\in \mathbb{R}$, we have ${{b}^{2}}\ge 0$
Hence we have
${{b}^{2}}=-\dfrac{1}{2}$ is rejected.
Hence, we have
$\begin{align}
& {{b}^{2}}=\dfrac{1}{2} \\
& \Rightarrow b=\pm \dfrac{1}{\sqrt{2}} \\
\end{align}$
Hence, from equation (i), we get
$a=\pm \dfrac{1}{\sqrt{2}}$
Hence, we have
$\sqrt{i}=\pm \dfrac{1}{\sqrt{2}}\pm i\dfrac{1}{\sqrt{2}}=\pm \dfrac{1}{\sqrt{2}}\left( 1+i \right)$
Hence, we have
$1+\sqrt{i}=1\pm \dfrac{1}{\sqrt{2}}+i\left( \pm \dfrac{1}{\sqrt{2}} \right)$
Hence, we have $\operatorname{Re}\left( 1+\sqrt{i} \right)=1+\dfrac{1}{\sqrt{2}},\operatorname{Im}\left( 1+\sqrt{i} \right)=\dfrac{1}{\sqrt{2}}\text{ or }\operatorname{Re}\left( 1+\sqrt{i} \right)=1-\dfrac{1}{\sqrt{2}},\operatorname{Im}\left( 1+\sqrt{i} \right)=-\dfrac{1}{\sqrt{2}}$
Hence options [a] and [c] are correct.
Note: Alternative solution: Using Euler’s identity:
We know that ${{e}^{i\theta }}=\cos \theta +i\sin \theta $
Hence, we have
$\begin{align}
& {{e}^{i\dfrac{\pi }{2}}}=\cos \dfrac{\pi }{2}+i\sin \dfrac{\pi }{2}=i \\
& {{e}^{i\dfrac{5\pi }{2}}}=\cos \dfrac{5\pi }{2}+i\sin \dfrac{5\pi }{2}=i \\
\end{align}$
Hence, we have
$\sqrt{i}={{\left( {{e}^{\dfrac{i\pi }{2}}} \right)}^{\dfrac{1}{2}}}={{e}^{i\dfrac{\pi }{4}}}=\cos \dfrac{\pi }{4}+i\sin \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}+\dfrac{i}{\sqrt{2}}$
Also, we have
$\sqrt{i}={{\left( {{e}^{i\dfrac{5\pi }{2}}} \right)}^{\dfrac{1}{2}}}={{e}^{\dfrac{5\pi }{4}}}=\cos \dfrac{5\pi }{4}+i\sin \dfrac{5\pi }{4}=-\dfrac{1}{\sqrt{2}}-\dfrac{i}{\sqrt{2}}$
Hence, we have
$\sqrt{i}=\pm \dfrac{1}{\sqrt{2}}\pm \dfrac{i}{\sqrt{2}}$, which is the same as obtained above.
Hence following a similar procedure as above, we get
$\operatorname{Re}\left( 1+\sqrt{i} \right)=1+\dfrac{1}{\sqrt{2}},\operatorname{Im}\left( 1+\sqrt{i} \right)=\dfrac{1}{\sqrt{2}}\text{ or }\operatorname{Re}\left( 1+\sqrt{i} \right)=1-\dfrac{1}{\sqrt{2}},\operatorname{Im}\left( 1+\sqrt{i} \right)=-\dfrac{1}{\sqrt{2}}$
Hence options [a] and [c] are correct.
Complete step-by-step solution
Let $\sqrt{i}=a+ib,a,b\in \mathbb{R}$
Squaring both sides, we get
$i={{\left( a+ib \right)}^{2}}$
We know that ${{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$
Hence, we have
$i={{a}^{2}}+{{\left( ib \right)}^{2}}+2a\left( ib \right)$
We know that ${{i}^{2}}=-1$. Hence, we get
$i={{a}^{2}}-{{b}^{2}}+i2ab$
Comparing real parts, we get
$\begin{align}
& {{a}^{2}}-{{b}^{2}}=0 \\
& \Rightarrow a=\pm b\text{ }\left( i \right) \\
\end{align}$
Comparing imaginary parts, we get
$2ab=1$
Substituting the value of a from equation (i), we get
$\begin{align}
& \pm 2{{b}^{2}}=1 \\
& \Rightarrow {{b}^{2}}=\pm \dfrac{1}{2} \\
\end{align}$
Since $b\in \mathbb{R}$, we have ${{b}^{2}}\ge 0$
Hence we have
${{b}^{2}}=-\dfrac{1}{2}$ is rejected.
Hence, we have
$\begin{align}
& {{b}^{2}}=\dfrac{1}{2} \\
& \Rightarrow b=\pm \dfrac{1}{\sqrt{2}} \\
\end{align}$
Hence, from equation (i), we get
$a=\pm \dfrac{1}{\sqrt{2}}$
Hence, we have
$\sqrt{i}=\pm \dfrac{1}{\sqrt{2}}\pm i\dfrac{1}{\sqrt{2}}=\pm \dfrac{1}{\sqrt{2}}\left( 1+i \right)$
Hence, we have
$1+\sqrt{i}=1\pm \dfrac{1}{\sqrt{2}}+i\left( \pm \dfrac{1}{\sqrt{2}} \right)$
Hence, we have $\operatorname{Re}\left( 1+\sqrt{i} \right)=1+\dfrac{1}{\sqrt{2}},\operatorname{Im}\left( 1+\sqrt{i} \right)=\dfrac{1}{\sqrt{2}}\text{ or }\operatorname{Re}\left( 1+\sqrt{i} \right)=1-\dfrac{1}{\sqrt{2}},\operatorname{Im}\left( 1+\sqrt{i} \right)=-\dfrac{1}{\sqrt{2}}$
Hence options [a] and [c] are correct.
Note: Alternative solution: Using Euler’s identity:
We know that ${{e}^{i\theta }}=\cos \theta +i\sin \theta $
Hence, we have
$\begin{align}
& {{e}^{i\dfrac{\pi }{2}}}=\cos \dfrac{\pi }{2}+i\sin \dfrac{\pi }{2}=i \\
& {{e}^{i\dfrac{5\pi }{2}}}=\cos \dfrac{5\pi }{2}+i\sin \dfrac{5\pi }{2}=i \\
\end{align}$
Hence, we have
$\sqrt{i}={{\left( {{e}^{\dfrac{i\pi }{2}}} \right)}^{\dfrac{1}{2}}}={{e}^{i\dfrac{\pi }{4}}}=\cos \dfrac{\pi }{4}+i\sin \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}+\dfrac{i}{\sqrt{2}}$
Also, we have
$\sqrt{i}={{\left( {{e}^{i\dfrac{5\pi }{2}}} \right)}^{\dfrac{1}{2}}}={{e}^{\dfrac{5\pi }{4}}}=\cos \dfrac{5\pi }{4}+i\sin \dfrac{5\pi }{4}=-\dfrac{1}{\sqrt{2}}-\dfrac{i}{\sqrt{2}}$
Hence, we have
$\sqrt{i}=\pm \dfrac{1}{\sqrt{2}}\pm \dfrac{i}{\sqrt{2}}$, which is the same as obtained above.
Hence following a similar procedure as above, we get
$\operatorname{Re}\left( 1+\sqrt{i} \right)=1+\dfrac{1}{\sqrt{2}},\operatorname{Im}\left( 1+\sqrt{i} \right)=\dfrac{1}{\sqrt{2}}\text{ or }\operatorname{Re}\left( 1+\sqrt{i} \right)=1-\dfrac{1}{\sqrt{2}},\operatorname{Im}\left( 1+\sqrt{i} \right)=-\dfrac{1}{\sqrt{2}}$
Hence options [a] and [c] are correct.
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Who discovered the cell and how class 12 biology CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE
