Answer
Verified
454.5k+ views
Hint: For elementary reaction, the orders of reactants in the rate law expression are equal to the stoichiometric coefficients in the balanced chemical equation. The rate of the reaction is directly proportional to the partial pressures of the reactants. The partial pressures are raised to appropriate stoichiometric coefficients.
Complete step by step answer:
Write the balanced chemical equation
\[{\text{A}}\left( g \right){\text{ + 2 B}}\left( g \right){\text{ }} \to {\text{ C}}\left( g \right){\text{ + D}}\left( g \right)\]
Since the reaction is an elementary reaction, you can assume that the orders of A and B in the rate law expression are equal to the stoichiometric coefficients in the balanced chemical equation. Write the rate law equation
\[{\text{R = k}} \times {{\text{P}}_{\text{A}}} \times {\text{P}}_{\text{B}}^2\]
Here, R is the rate of the reaction and k is the rate constant.
For initial and final conditions, determine the rate law expressions separately. Then divide these two rate law expressions for initial and final conditions and then calculate the ratio of the relative reaction rates for final and initial conditions.
The initial partial pressures of A and B are \[{P_{\text{A}}}{\text{ = 0}}{\text{.60 and }}{P_{\text{B}}}{\text{ = 0}}{\text{.80 atm}}\] respectively.
Substitute the values in the rate law expression.
\[{{\text{R}}_1}{\text{ = k}} \times {\text{0}}{\text{.60}} \times {\left( {0.80} \right)^2}\] … …(1)
Prepare a table showing initial partial pressures, change in partial pressures and equilibrium partial pressures.
When \[{P_{\text{C}}}{\text{ = 0}}{\text{.2 atm}}\] calculate the final values of the partial pressures
Substitute the values in the rate law expression.
\[{{\text{R}}_2}{\text{ = k}} \times {\text{0}}{\text{.40}} \times {\left( {0.40} \right)^2}\] … …(2)
Divide equation (2) with equation (1)
\[\dfrac{{{{\text{R}}_2}}}{{{{\text{R}}_1}}} = \dfrac{{{\text{k}} \times {\text{0}}{\text{.40}}
\times {{\left( {0.40} \right)}^2}}}{{{\text{k}} \times {\text{0}}{\text{.60}} \times {{\left( {0.80} \right)}^2}}} \\
\dfrac{{{{\text{R}}_2}}}{{{{\text{R}}_1}}} = \dfrac{1}{6} \\ \]
The rate of the reaction relative to the initial rate is \[\dfrac{1}{6}\].
Hence, the option D ) is the correct option.
Note: Do not forget to raise the partial pressures to appropriate stoichiometric coefficients in the rate law expression. This will lead to calculation errors.
Complete step by step answer:
Write the balanced chemical equation
\[{\text{A}}\left( g \right){\text{ + 2 B}}\left( g \right){\text{ }} \to {\text{ C}}\left( g \right){\text{ + D}}\left( g \right)\]
Since the reaction is an elementary reaction, you can assume that the orders of A and B in the rate law expression are equal to the stoichiometric coefficients in the balanced chemical equation. Write the rate law equation
\[{\text{R = k}} \times {{\text{P}}_{\text{A}}} \times {\text{P}}_{\text{B}}^2\]
Here, R is the rate of the reaction and k is the rate constant.
For initial and final conditions, determine the rate law expressions separately. Then divide these two rate law expressions for initial and final conditions and then calculate the ratio of the relative reaction rates for final and initial conditions.
The initial partial pressures of A and B are \[{P_{\text{A}}}{\text{ = 0}}{\text{.60 and }}{P_{\text{B}}}{\text{ = 0}}{\text{.80 atm}}\] respectively.
Substitute the values in the rate law expression.
\[{{\text{R}}_1}{\text{ = k}} \times {\text{0}}{\text{.60}} \times {\left( {0.80} \right)^2}\] … …(1)
Prepare a table showing initial partial pressures, change in partial pressures and equilibrium partial pressures.
\[{\text{A}}\left( g \right)\] | \[{\text{B}}\left( g \right)\] | \[{\text{C}}\left( g \right)\] | \[{\text{D}}\left( g \right)\] | |
Initial partial pressure (atm) | 0.60 | 0.80 | 0.0 | 0.0 |
Change in partial pressure (atm) | -0.2 | -0.4 | 0.2 | 0.2 |
Equilibrium partial pressure (atm) | 0.40 | 0.40 | 0.2 | 0.2 |
When \[{P_{\text{C}}}{\text{ = 0}}{\text{.2 atm}}\] calculate the final values of the partial pressures
Substitute the values in the rate law expression.
\[{{\text{R}}_2}{\text{ = k}} \times {\text{0}}{\text{.40}} \times {\left( {0.40} \right)^2}\] … …(2)
Divide equation (2) with equation (1)
\[\dfrac{{{{\text{R}}_2}}}{{{{\text{R}}_1}}} = \dfrac{{{\text{k}} \times {\text{0}}{\text{.40}}
\times {{\left( {0.40} \right)}^2}}}{{{\text{k}} \times {\text{0}}{\text{.60}} \times {{\left( {0.80} \right)}^2}}} \\
\dfrac{{{{\text{R}}_2}}}{{{{\text{R}}_1}}} = \dfrac{1}{6} \\ \]
The rate of the reaction relative to the initial rate is \[\dfrac{1}{6}\].
Hence, the option D ) is the correct option.
Note: Do not forget to raise the partial pressures to appropriate stoichiometric coefficients in the rate law expression. This will lead to calculation errors.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Discuss the main reasons for poverty in India
A Paragraph on Pollution in about 100-150 Words
Advantages and disadvantages of science
Why is monsoon considered a unifying bond class 10 social science CBSE
What makes elections in India democratic class 11 social science CBSE