
The ratio of the number of sides of two regular polygons is 5 : 4 and the difference of their exterior angles is ${9^ \circ }$ . Find the number of sides of both the polygons.
Answer
604.8k+ views
Hint: Considering n be the greatest common divisor(GCD).Then one polygon has 5n sides,while other has 4n sides and we have to calculate the exterior angle of polygon of 5n-sides and 4n-sides and find their differences
“Complete step-by-step answer:”
Let n be the greatest common divisor (GCD) of the numbers under the question.
Then one polygon has 5n sides, while other has 4n sides
It is well known fact that the sum of exterior angles of each polygon is ${360^ \circ }$
So, the exterior angle of the regular 5n-sided polygon is $\dfrac{{{{360}^ \circ }}}{{5n}}$
Similarly, the exterior angle of the regular 4n-sided polygon is $\dfrac{{{{360}^ \circ }}}{{4n}}$
According to question it is given that difference between the corresponding exterior angles is ${9^ \circ }$
$ \Rightarrow \dfrac{{{{360}^ \circ }}}{{4n}} - \dfrac{{{{360}^ \circ }}}{{5n}} = {9^ \circ }$
$ \Rightarrow \dfrac{{5n - 4n}}{{20{n^2}}} = \dfrac{9}{{360}} = \dfrac{1}{{40}}$
$ \Rightarrow 20n = 40$
$ \Rightarrow n = 2$
So, number of sides in one polygon = $5n = 5 \times 2 = 10$
And number of sides in another polygon $ = 4n = 4 \times 2 = 8$
So this is your answer
NOTE: Whenever we face such a problem the key concept is that we have to remember the exterior angle formula for n sided polygon it will help you in finding your desired answer.
“Complete step-by-step answer:”
Let n be the greatest common divisor (GCD) of the numbers under the question.
Then one polygon has 5n sides, while other has 4n sides
It is well known fact that the sum of exterior angles of each polygon is ${360^ \circ }$
So, the exterior angle of the regular 5n-sided polygon is $\dfrac{{{{360}^ \circ }}}{{5n}}$
Similarly, the exterior angle of the regular 4n-sided polygon is $\dfrac{{{{360}^ \circ }}}{{4n}}$
According to question it is given that difference between the corresponding exterior angles is ${9^ \circ }$
$ \Rightarrow \dfrac{{{{360}^ \circ }}}{{4n}} - \dfrac{{{{360}^ \circ }}}{{5n}} = {9^ \circ }$
$ \Rightarrow \dfrac{{5n - 4n}}{{20{n^2}}} = \dfrac{9}{{360}} = \dfrac{1}{{40}}$
$ \Rightarrow 20n = 40$
$ \Rightarrow n = 2$
So, number of sides in one polygon = $5n = 5 \times 2 = 10$
And number of sides in another polygon $ = 4n = 4 \times 2 = 8$
So this is your answer
NOTE: Whenever we face such a problem the key concept is that we have to remember the exterior angle formula for n sided polygon it will help you in finding your desired answer.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

What is periodicity class 11 chemistry CBSE

What is a periderm How does periderm formation take class 11 biology CBSE

Mention the basic forces in nature class 11 physics CBSE

What are porins class 11 biology CBSE

