Answer
Verified
405.6k+ views
Hint: According to the law of radioactive decay when a radioactive material undergoes decay the number of nuclei that is undergoing the decay per unit time is directly proportional to the total number of nuclei in the given sample. The direct proportionality is removed by the introduction of a constant called the decay constant represented by $\lambda $ .
Half life of a radioactive material is the time required for it to reduce to half of its initial value during decay. The decay constant is related to half time.
Formulas used: We will be using the formula for mathematical representation of the law of radioactive decay, $\dfrac{{\Delta N}}{{\Delta t}} = \lambda N$ where $\dfrac{{\Delta N}}{{\Delta t}}$ is the rate of decay of the radioactive material, $\lambda $ is the decay constant, and $N$ is the total number of radioactive nuclei in the sample.
We will also be using the formula to relate half life of the radioactive nuclei to the half life of the sample, ${t_{1/2}} = \dfrac{{\ln 2}}{\lambda }$ where ${t_{1/2}}$ is the half-life of the sample, $\lambda $ is the decay constant of the sample and $\ln 2 = 0.693$ .
Complete Step by Step Answer:
We know that radioactive decay is the process by which an unstable atomic nucleus loses its energy by radiation. The material with unstable nuclei is called radioactive. According to the law of radioactive decay the rate of radioactivity of the material can be directly proportional to the total number of nuclei in the sample.
We know from the problem that the half life of the sample is ${t_{1/2}} = 2.2 \times {10^9}s$.
We know that the half life of a sample is related to the decay constant by, ${t_{1/2}} = \dfrac{{\ln 2}}{\lambda }$ substituting the known values we get, $2.2 \times {10^9}s = \dfrac{{0.693}}{\lambda }$ .
Solving for $\lambda $ we get,
$\lambda = \dfrac{{0.693}}{{2.2 \times {{10}^9}}} = 0.315 \times {10^{ - 9}}{s^{ - 1}}$
Now that we have the decay constant, we know that the rate of decay is given, $R = \dfrac{{\Delta N}}{{\Delta t}} = {10^{10}}{s^{ - 1}}$
We know that $\dfrac{{\Delta N}}{{\Delta t}} = \lambda N$ . Thus, substituting the known values, we get,
${10^{10}}{s^{ - 1}} = \left( {0.315 \times {{10}^{ - 9}}{s^{ - 1}}} \right) \times N$
\[ \Rightarrow N = \dfrac{{{{10}^{10}}{s^{ - 1}}}}{{0.315 \times {{10}^{ - 9}}{s^{ - 1}}}}\]
Solving for $N$ we get,
$ \Rightarrow N = 3.174 \times {10^{19}}$
Thus, there will be a total of $N = 3.174 \times {10^{19}}$ nuclei in the sample.
Note: Radium is a radioactive element and was discovered by Madame Marie Curie and hence the older unit of radioactivity was named after her to be curie with the symbol $Ci$ .
Half life of a radioactive material is the time required for it to reduce to half of its initial value during decay. The decay constant is related to half time.
Formulas used: We will be using the formula for mathematical representation of the law of radioactive decay, $\dfrac{{\Delta N}}{{\Delta t}} = \lambda N$ where $\dfrac{{\Delta N}}{{\Delta t}}$ is the rate of decay of the radioactive material, $\lambda $ is the decay constant, and $N$ is the total number of radioactive nuclei in the sample.
We will also be using the formula to relate half life of the radioactive nuclei to the half life of the sample, ${t_{1/2}} = \dfrac{{\ln 2}}{\lambda }$ where ${t_{1/2}}$ is the half-life of the sample, $\lambda $ is the decay constant of the sample and $\ln 2 = 0.693$ .
Complete Step by Step Answer:
We know that radioactive decay is the process by which an unstable atomic nucleus loses its energy by radiation. The material with unstable nuclei is called radioactive. According to the law of radioactive decay the rate of radioactivity of the material can be directly proportional to the total number of nuclei in the sample.
We know from the problem that the half life of the sample is ${t_{1/2}} = 2.2 \times {10^9}s$.
We know that the half life of a sample is related to the decay constant by, ${t_{1/2}} = \dfrac{{\ln 2}}{\lambda }$ substituting the known values we get, $2.2 \times {10^9}s = \dfrac{{0.693}}{\lambda }$ .
Solving for $\lambda $ we get,
$\lambda = \dfrac{{0.693}}{{2.2 \times {{10}^9}}} = 0.315 \times {10^{ - 9}}{s^{ - 1}}$
Now that we have the decay constant, we know that the rate of decay is given, $R = \dfrac{{\Delta N}}{{\Delta t}} = {10^{10}}{s^{ - 1}}$
We know that $\dfrac{{\Delta N}}{{\Delta t}} = \lambda N$ . Thus, substituting the known values, we get,
${10^{10}}{s^{ - 1}} = \left( {0.315 \times {{10}^{ - 9}}{s^{ - 1}}} \right) \times N$
\[ \Rightarrow N = \dfrac{{{{10}^{10}}{s^{ - 1}}}}{{0.315 \times {{10}^{ - 9}}{s^{ - 1}}}}\]
Solving for $N$ we get,
$ \Rightarrow N = 3.174 \times {10^{19}}$
Thus, there will be a total of $N = 3.174 \times {10^{19}}$ nuclei in the sample.
Note: Radium is a radioactive element and was discovered by Madame Marie Curie and hence the older unit of radioactivity was named after her to be curie with the symbol $Ci$ .
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
At which age domestication of animals started A Neolithic class 11 social science CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Summary of the poem Where the Mind is Without Fear class 8 english CBSE
One cusec is equal to how many liters class 8 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE