The rate of radioactive disintegration at an instant for a radioactive sample of half life $2.2 \times {10^9}s$ is ${10^{10}}{s^{ - 1}}$ . The number of radioactive atoms in that sample at that instant is:
(A) $3.17 \times {10^{19}}$
(B) $3.17 \times {10^{20}}$
(C) $3.17 \times {10^{17}}$
(D) $3.17 \times {10^{18}}$
Answer
Verified
438k+ views
Hint: According to the law of radioactive decay when a radioactive material undergoes decay the number of nuclei that is undergoing the decay per unit time is directly proportional to the total number of nuclei in the given sample. The direct proportionality is removed by the introduction of a constant called the decay constant represented by $\lambda $ .
Half life of a radioactive material is the time required for it to reduce to half of its initial value during decay. The decay constant is related to half time.
Formulas used: We will be using the formula for mathematical representation of the law of radioactive decay, $\dfrac{{\Delta N}}{{\Delta t}} = \lambda N$ where $\dfrac{{\Delta N}}{{\Delta t}}$ is the rate of decay of the radioactive material, $\lambda $ is the decay constant, and $N$ is the total number of radioactive nuclei in the sample.
We will also be using the formula to relate half life of the radioactive nuclei to the half life of the sample, ${t_{1/2}} = \dfrac{{\ln 2}}{\lambda }$ where ${t_{1/2}}$ is the half-life of the sample, $\lambda $ is the decay constant of the sample and $\ln 2 = 0.693$ .
Complete Step by Step Answer:
We know that radioactive decay is the process by which an unstable atomic nucleus loses its energy by radiation. The material with unstable nuclei is called radioactive. According to the law of radioactive decay the rate of radioactivity of the material can be directly proportional to the total number of nuclei in the sample.
We know from the problem that the half life of the sample is ${t_{1/2}} = 2.2 \times {10^9}s$.
We know that the half life of a sample is related to the decay constant by, ${t_{1/2}} = \dfrac{{\ln 2}}{\lambda }$ substituting the known values we get, $2.2 \times {10^9}s = \dfrac{{0.693}}{\lambda }$ .
Solving for $\lambda $ we get,
$\lambda = \dfrac{{0.693}}{{2.2 \times {{10}^9}}} = 0.315 \times {10^{ - 9}}{s^{ - 1}}$
Now that we have the decay constant, we know that the rate of decay is given, $R = \dfrac{{\Delta N}}{{\Delta t}} = {10^{10}}{s^{ - 1}}$
We know that $\dfrac{{\Delta N}}{{\Delta t}} = \lambda N$ . Thus, substituting the known values, we get,
${10^{10}}{s^{ - 1}} = \left( {0.315 \times {{10}^{ - 9}}{s^{ - 1}}} \right) \times N$
\[ \Rightarrow N = \dfrac{{{{10}^{10}}{s^{ - 1}}}}{{0.315 \times {{10}^{ - 9}}{s^{ - 1}}}}\]
Solving for $N$ we get,
$ \Rightarrow N = 3.174 \times {10^{19}}$
Thus, there will be a total of $N = 3.174 \times {10^{19}}$ nuclei in the sample.
Note: Radium is a radioactive element and was discovered by Madame Marie Curie and hence the older unit of radioactivity was named after her to be curie with the symbol $Ci$ .
Half life of a radioactive material is the time required for it to reduce to half of its initial value during decay. The decay constant is related to half time.
Formulas used: We will be using the formula for mathematical representation of the law of radioactive decay, $\dfrac{{\Delta N}}{{\Delta t}} = \lambda N$ where $\dfrac{{\Delta N}}{{\Delta t}}$ is the rate of decay of the radioactive material, $\lambda $ is the decay constant, and $N$ is the total number of radioactive nuclei in the sample.
We will also be using the formula to relate half life of the radioactive nuclei to the half life of the sample, ${t_{1/2}} = \dfrac{{\ln 2}}{\lambda }$ where ${t_{1/2}}$ is the half-life of the sample, $\lambda $ is the decay constant of the sample and $\ln 2 = 0.693$ .
Complete Step by Step Answer:
We know that radioactive decay is the process by which an unstable atomic nucleus loses its energy by radiation. The material with unstable nuclei is called radioactive. According to the law of radioactive decay the rate of radioactivity of the material can be directly proportional to the total number of nuclei in the sample.
We know from the problem that the half life of the sample is ${t_{1/2}} = 2.2 \times {10^9}s$.
We know that the half life of a sample is related to the decay constant by, ${t_{1/2}} = \dfrac{{\ln 2}}{\lambda }$ substituting the known values we get, $2.2 \times {10^9}s = \dfrac{{0.693}}{\lambda }$ .
Solving for $\lambda $ we get,
$\lambda = \dfrac{{0.693}}{{2.2 \times {{10}^9}}} = 0.315 \times {10^{ - 9}}{s^{ - 1}}$
Now that we have the decay constant, we know that the rate of decay is given, $R = \dfrac{{\Delta N}}{{\Delta t}} = {10^{10}}{s^{ - 1}}$
We know that $\dfrac{{\Delta N}}{{\Delta t}} = \lambda N$ . Thus, substituting the known values, we get,
${10^{10}}{s^{ - 1}} = \left( {0.315 \times {{10}^{ - 9}}{s^{ - 1}}} \right) \times N$
\[ \Rightarrow N = \dfrac{{{{10}^{10}}{s^{ - 1}}}}{{0.315 \times {{10}^{ - 9}}{s^{ - 1}}}}\]
Solving for $N$ we get,
$ \Rightarrow N = 3.174 \times {10^{19}}$
Thus, there will be a total of $N = 3.174 \times {10^{19}}$ nuclei in the sample.
Note: Radium is a radioactive element and was discovered by Madame Marie Curie and hence the older unit of radioactivity was named after her to be curie with the symbol $Ci$ .
Recently Updated Pages
Class 11 Question and Answer - Your Ultimate Solutions Guide
Master Class 11 English: Engaging Questions & Answers for Success
Master Class 11 Computer Science: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Economics: Engaging Questions & Answers for Success
Trending doubts
10 examples of friction in our daily life
What problem did Carter face when he reached the mummy class 11 english CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE