
The range of $f\left( x \right)=\cos \left( \dfrac{x}{3} \right)$ is:
A. $\left( -\dfrac{1}{3},\dfrac{1}{3} \right)$
B. $\left[ -1,1 \right]$
C. $\left( \dfrac{1}{3},-\dfrac{1}{3} \right)$
D. $\left( -3,3 \right)$
Answer
487.5k+ views
Hint: Here, we have been asked to give the range of the function defined as $f\left( x \right)=\cos \left( \dfrac{x}{3} \right)$. To do this, we will first have to define what kind of function this is so that we get its better understanding. Here, it is a trigonometric function. Then we will give its domain and from all the collective knowledge that we have of the function now, we will provide its range.
Complete step by step answer:
We have been given a function $f\left( x \right)=\cos \left( \dfrac{x}{3} \right)$ and we need to find its range. For this we first need to know what kind of function this is.
This is a trigonometric function and we know that the domain of all trigonometric functions (not inverse, only the simple trigonometric functions) is all real numbers.
Thus, here also in f(x), all the real numbers can take the value of x.
But we also know that the cosine function is a periodic function, i.e. the values of cosx start repeating after a fixed interval.
Now, we also know that the value of cosx always lies in the interval $\left[ -1,1 \right]$ no matter whatever the value of x be.
Here, we have been given $\cos \left( \dfrac{x}{3} \right)$ and we know that $\dfrac{x}{3}$ can also take any real value. Hence, the range of $\cos \left( \dfrac{x}{3} \right)$ is the same as that of cosx.
Hence, the range of $f\left( x \right)=\cos \left( \dfrac{x}{3} \right)$ is [-1,1].
So, the correct answer is “Option B”.
Note: Here we have given ranges of some trigonometric functions which might come in handy:
1. sinx: [-1,1]
2. cosx: [-1,1]
3. tanx: $\left( -\infty ,\infty \right)$
4. cotx: $\left( -\infty .\infty \right)$
5. secx: $(-\infty ,-1]\cup [1,\infty )$
6. cosecx: $(-\infty ,-1]\cup [1,\infty )$
Complete step by step answer:
We have been given a function $f\left( x \right)=\cos \left( \dfrac{x}{3} \right)$ and we need to find its range. For this we first need to know what kind of function this is.
This is a trigonometric function and we know that the domain of all trigonometric functions (not inverse, only the simple trigonometric functions) is all real numbers.
Thus, here also in f(x), all the real numbers can take the value of x.
But we also know that the cosine function is a periodic function, i.e. the values of cosx start repeating after a fixed interval.
Now, we also know that the value of cosx always lies in the interval $\left[ -1,1 \right]$ no matter whatever the value of x be.
Here, we have been given $\cos \left( \dfrac{x}{3} \right)$ and we know that $\dfrac{x}{3}$ can also take any real value. Hence, the range of $\cos \left( \dfrac{x}{3} \right)$ is the same as that of cosx.
Hence, the range of $f\left( x \right)=\cos \left( \dfrac{x}{3} \right)$ is [-1,1].
So, the correct answer is “Option B”.
Note: Here we have given ranges of some trigonometric functions which might come in handy:
1. sinx: [-1,1]
2. cosx: [-1,1]
3. tanx: $\left( -\infty ,\infty \right)$
4. cotx: $\left( -\infty .\infty \right)$
5. secx: $(-\infty ,-1]\cup [1,\infty )$
6. cosecx: $(-\infty ,-1]\cup [1,\infty )$
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Earth rotates from West to east ATrue BFalse class 6 social science CBSE

The easternmost longitude of India is A 97circ 25E class 6 social science CBSE

Write the given sentence in the passive voice Ann cant class 6 CBSE

Convert 1 foot into meters A030 meter B03048 meter-class-6-maths-CBSE

What is the LCM of 30 and 40 class 6 maths CBSE

Trending doubts
Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE

What is the difference between superposition and e class 11 physics CBSE

State and prove Bernoullis theorem class 11 physics CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
