
The radius of the first bohr orbit (n=1) of hydrogen atom is 53.4 pm. The radius of bohr orbit having n=3 in $L{i^{2 + }}$will be :
A. 53.4 pm
B. 106.8 pm
C. 120.1 pm
D. 160.2 pm
Answer
565.2k+ views
Hint: We know that neil bohr was the first to explain the general features of hydrogen atom structure and its spectrum. Bohr’s theory can be applied on the ions containing only one electron similar to that of hydrogen atom like $L{i^{2 + }}$, $B{e^{3 + }}$ and $H{e^ + }$, such species are also called hydrogen like species.
Formula used: For hydrogen like species, the radii expression from bohr’s theory is given as:
${r_n} = \dfrac{{{a_ \circ }({n^2})}}{Z}pm$
Complete step-by-step solution:
Formula used: For hydrogen like species, the radii expression from bohr’s theory is given as:
${r_n} = \dfrac{{{a_ \circ }({n^2})}}{Z}pm$
Complete step-by-step solution:
Let us understand the electron in the hydrogen atom can move around the nucleus in a circular path of fixed radius and energy. These paths are called orbits, stationary states or allowed energy states. These orbits are arranged concentrically around the nucleus.
This energy and radius does not change with time but only as one moves from lower stationary state to higher stationary state when the electron absorbs the required amount of energy and emits the energy to move from higher state to lower state. These stationary states or orbits are denoted by an integral number known as principal quantum number which varies from n=1, 2, 3, 4 etc.
The radii of these stationary states can be expressed as:
${r_n} = {n^2}{a_ \circ }$
where ${a_ \circ }$ is the radius of the first stationary state and is called Bohr radius.
In the question above we have been given with first bohr orbit with n=1 therefore we can calculate the value of ${a_ \circ }$by substituting the given values,
$
{r_1} = {(1)^2}{a_ \circ } \\
53.4 = {a_ \circ } \\
$
Similarly for hydrogen like species such as lithium ion the radii expression from bohr’s theory is given as
${r_n} = \dfrac{{{a_ \circ }({n^2})}}{Z}pm$
$\Rightarrow {r_n} = \dfrac{{53.4({n^2})}}{Z}pm$
Now we have been given n=3 and Z is the atomic number of lithium which is 3 therefore substituting we get,
${r_3} = \dfrac{{53.4({3^2})}}{3}pm = 160.2pm$
Hence, the correct option is D.
Note: From the above we observe that the value of energy becomes more negative and that of radius becomes smaller with increase of atomic number Z, this means that the electron will be tightly bound to the nucleus.
This energy and radius does not change with time but only as one moves from lower stationary state to higher stationary state when the electron absorbs the required amount of energy and emits the energy to move from higher state to lower state. These stationary states or orbits are denoted by an integral number known as principal quantum number which varies from n=1, 2, 3, 4 etc.
The radii of these stationary states can be expressed as:
${r_n} = {n^2}{a_ \circ }$
where ${a_ \circ }$ is the radius of the first stationary state and is called Bohr radius.
In the question above we have been given with first bohr orbit with n=1 therefore we can calculate the value of ${a_ \circ }$by substituting the given values,
$
{r_1} = {(1)^2}{a_ \circ } \\
53.4 = {a_ \circ } \\
$
Similarly for hydrogen like species such as lithium ion the radii expression from bohr’s theory is given as
${r_n} = \dfrac{{{a_ \circ }({n^2})}}{Z}pm$
$\Rightarrow {r_n} = \dfrac{{53.4({n^2})}}{Z}pm$
Now we have been given n=3 and Z is the atomic number of lithium which is 3 therefore substituting we get,
${r_3} = \dfrac{{53.4({3^2})}}{3}pm = 160.2pm$
Hence, the correct option is D.
Note: From the above we observe that the value of energy becomes more negative and that of radius becomes smaller with increase of atomic number Z, this means that the electron will be tightly bound to the nucleus.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

