Answer
Verified
445.5k+ views
Hint: In order to solve this problem we need to use the formula of sum of finite geometric series $S = \dfrac{{a({r^n} - 1)}}{{r - 1}}$ . Then we need to use it for both the series given and then we need to divide the obtained sum to get the right answer.
Complete step-by-step answer:
As we know, the sum of finite geometric series $1,r,{r^2},{r^3},{r^4}..........{r^{n - 1}}$ with common ratio is given by
$a,ar,a{r^2},a{r^3},a{r^4}..........a{r^{n - 1}} = S = \dfrac{{a({r^n} - 1)}}{{r - 1}}$ = sum (where r is greater than 1)
When r is less than 1 then the formula of sum for n terms of GP will be $\dfrac{{a(1 - {r^n})}}{{1 - r}}$.
Now, $1 + {x^2} + {x^4} + {x^6} + .......... + {x^{34}}$ forms a finite geometric series with common ratio ${x^2}$, first term 1 and number of terms n = 18 (since power of x from 2 to 34 with the difference of 2 is 17 terms and the first term is 1 therefore n = 18) then sum is,
$1 + {x^2} + {x^4} + {x^6} + .......... + {x^{34}} = \dfrac{{{x^{2(18)}} - 1}}{{{x^2} - 1}}$
$1 + {x^2} + {x^4} + {x^6} + .......... + {x^{34}} = \dfrac{{{x^{36}} - 1}}{{{x^2} - 1}}$……….(1)
Now, $1 + x + {x^2} + {x^3} + ........... + {x^{17}}$ forms a finite geometric series with common ratio x, first term 1 and number of terms n = 18 (since power of x from 1 to 17 is 17 terms and first term is 1 therefore n = 18) then sum is
$1 + x + {x^2} + {x^3} + ........... + {x^{17}} = \dfrac{{{x^{18}} - 1}}{{x - 1}}$……………..(2)
Now, Dividing (1) by (2) equation
$ \Rightarrow \dfrac{{\left( {{x^{36}} - 1} \right)\left( {x - 1} \right)}}{{\left( {{x^2} - 1} \right)\left( {{x^{18}} - 1} \right)}} = \dfrac{{{x^{18}} - 1}}{{x + 1}}$
Now, we have to divide${x^{18}} + 1$ by (x + 1). We can see the degree of the numerator is 18 and the denominator has a linear equation. So, the degree of quotient starts from 17 and decreases with a difference of one.
$ \Rightarrow \dfrac{{{x^{18}} + 1}}{{x + 1}} = {x^{17}} - {x^{16}} + {x^{15}} - {x^{14}} + .......... + x$
So, the correct answer is “Option d”.
Note: Whenever we face such types of problems we use some important points. Like first of all try to convert series into easy form by using sum of series. While dividing carefully observe the degree of quotient and sign of coefficient. Doing these things will solve all such problems.
Complete step-by-step answer:
As we know, the sum of finite geometric series $1,r,{r^2},{r^3},{r^4}..........{r^{n - 1}}$ with common ratio is given by
$a,ar,a{r^2},a{r^3},a{r^4}..........a{r^{n - 1}} = S = \dfrac{{a({r^n} - 1)}}{{r - 1}}$ = sum (where r is greater than 1)
When r is less than 1 then the formula of sum for n terms of GP will be $\dfrac{{a(1 - {r^n})}}{{1 - r}}$.
Now, $1 + {x^2} + {x^4} + {x^6} + .......... + {x^{34}}$ forms a finite geometric series with common ratio ${x^2}$, first term 1 and number of terms n = 18 (since power of x from 2 to 34 with the difference of 2 is 17 terms and the first term is 1 therefore n = 18) then sum is,
$1 + {x^2} + {x^4} + {x^6} + .......... + {x^{34}} = \dfrac{{{x^{2(18)}} - 1}}{{{x^2} - 1}}$
$1 + {x^2} + {x^4} + {x^6} + .......... + {x^{34}} = \dfrac{{{x^{36}} - 1}}{{{x^2} - 1}}$……….(1)
Now, $1 + x + {x^2} + {x^3} + ........... + {x^{17}}$ forms a finite geometric series with common ratio x, first term 1 and number of terms n = 18 (since power of x from 1 to 17 is 17 terms and first term is 1 therefore n = 18) then sum is
$1 + x + {x^2} + {x^3} + ........... + {x^{17}} = \dfrac{{{x^{18}} - 1}}{{x - 1}}$……………..(2)
Now, Dividing (1) by (2) equation
$ \Rightarrow \dfrac{{\left( {{x^{36}} - 1} \right)\left( {x - 1} \right)}}{{\left( {{x^2} - 1} \right)\left( {{x^{18}} - 1} \right)}} = \dfrac{{{x^{18}} - 1}}{{x + 1}}$
Now, we have to divide${x^{18}} + 1$ by (x + 1). We can see the degree of the numerator is 18 and the denominator has a linear equation. So, the degree of quotient starts from 17 and decreases with a difference of one.
$ \Rightarrow \dfrac{{{x^{18}} + 1}}{{x + 1}} = {x^{17}} - {x^{16}} + {x^{15}} - {x^{14}} + .......... + x$
So, the correct answer is “Option d”.
Note: Whenever we face such types of problems we use some important points. Like first of all try to convert series into easy form by using sum of series. While dividing carefully observe the degree of quotient and sign of coefficient. Doing these things will solve all such problems.
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
The states of India which do not have an International class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE
Name the three parallel ranges of the Himalayas Describe class 9 social science CBSE