Answer
Verified
426.3k+ views
Hint: Here, the given term is in geometric progression as the terms are increasing in fixed ratio. So, we will use the concept of Geometric Progression to solve the question. A geometric progression is a sequence or series of numbers where each term after the first is found out by multiplying the previous one by a fixed number called the common ratio.
Formula used:
We will use the following formulas:
1. Exponential Formula: \[{a^m} \cdot {a^n} \cdot {a^o} \cdot {a^p}..... = {a^{m + n + o + p + .........}}\]
2. Exponential Formula: \[{\left( {{a^m}} \right)^n} = {a^{mn}}\]
3. Geometric Progression is given by \[{S_n} = \dfrac{{a(1 - {r^n})}}{{(1 - r)}}\] , where \[a\] is the first term and \[r\] is the common ratio.
Complete Step by Step Solution:
We are given with a geometric Series \[\left( {32} \right){\left( {32} \right)^{\dfrac{1}{6}}}{\left( {32} \right)^{\dfrac{1}{{36}}}}.......\infty \].
The given series is of the form \[a \cdot ar \cdot a{r^2} \cdot ....... \cdot a{r^n}\]
Thus, the first term of the Geometric Series \[a = 32\] and \[r = {1^{\dfrac{1}{6}}}\].
By using the formula \[{a^m} \cdot {a^n} \cdot {a^o} \cdot {a^p}..... = {a^{m + n + o + p + .........}}\], we can rewrite the given equation as:
\[ \Rightarrow \left( {32} \right){\left( {32} \right)^{\dfrac{1}{6}}}{\left( {32} \right)^{\dfrac{1}{{36}}}}.......\infty = {32^{\left( {1 + \dfrac{1}{6} + \dfrac{1}{{36}} + .......} \right)}}\]
Now, by applying the formula of Geometric Progression \[{S_n} = \dfrac{{a(1 - {r^n})}}{{(1 - r)}}\] to the power, we get
\[ \Rightarrow \left( {32} \right){\left( {32} \right)^{\dfrac{1}{6}}}{\left( {32} \right)^{\dfrac{1}{{36}}}}.......\infty = {32^{\left( {\dfrac{{1(1 - 0)}}{{1 - \dfrac{1}{6}}}} \right)}}\]
By cross multiplying, we get
\[ \Rightarrow \left( {32} \right){\left( {32} \right)^{\dfrac{1}{6}}}{\left( {32} \right)^{\dfrac{1}{{36}}}}.......\infty = {32^{\left( {\dfrac{1}{{\dfrac{{6 - 1}}{6}}}} \right)}}\]
Simplifying the expression, we get
\[ \Rightarrow \left( {32} \right){\left( {32} \right)^{\dfrac{1}{6}}}{\left( {32} \right)^{\dfrac{1}{{36}}}}.......\infty = {32^{\left( {\dfrac{1}{{\dfrac{5}{6}}}} \right)}}\]
\[ \Rightarrow \left( {32} \right){\left( {32} \right)^{\dfrac{1}{6}}}{\left( {32} \right)^{\dfrac{1}{{36}}}}.......\infty = {32^{\left( {\dfrac{6}{5}} \right)}}\]
Rewriting \[32\] in terms of the power of \[2\], we get
\[ \Rightarrow \left( {32} \right){\left( {32} \right)^{\dfrac{1}{6}}}{\left( {32} \right)^{\dfrac{1}{{36}}}}.......\infty = {2^{^5}}^{\left( {\dfrac{6}{5}} \right)}\]
Now, by using the formula \[{\left( {{a^m}} \right)^n} = {a^{mn}}\], we have
\[ \Rightarrow \left( {32} \right){\left( {32} \right)^{\dfrac{1}{6}}}{\left( {32} \right)^{\dfrac{1}{{36}}}}.......\infty = {2^6}\]
\[ \Rightarrow \left( {32} \right){\left( {32} \right)^{\dfrac{1}{6}}}{\left( {32} \right)^{\dfrac{1}{{36}}}}.......\infty = 64\]
Therefore, the product \[\left( {32} \right){\left( {32} \right)^{\dfrac{1}{6}}}{\left( {32} \right)^{\dfrac{1}{{36}}}}.......\infty \] is \[64\].
Note:
Here, we need to remember the basics of the Geometric Series and Geometric Sequence. The properties of G.P. are:
1. If every term of G.P. is multiplied or divided by a non-zero number, then the resulting terms are also in G.P.
2. If the common ratio is negative, then the result will alternate between positive and negative.
3. If the common ratio is greater than 1 then there will be an exponential growth towards infinity (positive).
4. If the common ratio is less than \[-1\] then there will be an exponential growth towards infinity (positive and negative).
Formula used:
We will use the following formulas:
1. Exponential Formula: \[{a^m} \cdot {a^n} \cdot {a^o} \cdot {a^p}..... = {a^{m + n + o + p + .........}}\]
2. Exponential Formula: \[{\left( {{a^m}} \right)^n} = {a^{mn}}\]
3. Geometric Progression is given by \[{S_n} = \dfrac{{a(1 - {r^n})}}{{(1 - r)}}\] , where \[a\] is the first term and \[r\] is the common ratio.
Complete Step by Step Solution:
We are given with a geometric Series \[\left( {32} \right){\left( {32} \right)^{\dfrac{1}{6}}}{\left( {32} \right)^{\dfrac{1}{{36}}}}.......\infty \].
The given series is of the form \[a \cdot ar \cdot a{r^2} \cdot ....... \cdot a{r^n}\]
Thus, the first term of the Geometric Series \[a = 32\] and \[r = {1^{\dfrac{1}{6}}}\].
By using the formula \[{a^m} \cdot {a^n} \cdot {a^o} \cdot {a^p}..... = {a^{m + n + o + p + .........}}\], we can rewrite the given equation as:
\[ \Rightarrow \left( {32} \right){\left( {32} \right)^{\dfrac{1}{6}}}{\left( {32} \right)^{\dfrac{1}{{36}}}}.......\infty = {32^{\left( {1 + \dfrac{1}{6} + \dfrac{1}{{36}} + .......} \right)}}\]
Now, by applying the formula of Geometric Progression \[{S_n} = \dfrac{{a(1 - {r^n})}}{{(1 - r)}}\] to the power, we get
\[ \Rightarrow \left( {32} \right){\left( {32} \right)^{\dfrac{1}{6}}}{\left( {32} \right)^{\dfrac{1}{{36}}}}.......\infty = {32^{\left( {\dfrac{{1(1 - 0)}}{{1 - \dfrac{1}{6}}}} \right)}}\]
By cross multiplying, we get
\[ \Rightarrow \left( {32} \right){\left( {32} \right)^{\dfrac{1}{6}}}{\left( {32} \right)^{\dfrac{1}{{36}}}}.......\infty = {32^{\left( {\dfrac{1}{{\dfrac{{6 - 1}}{6}}}} \right)}}\]
Simplifying the expression, we get
\[ \Rightarrow \left( {32} \right){\left( {32} \right)^{\dfrac{1}{6}}}{\left( {32} \right)^{\dfrac{1}{{36}}}}.......\infty = {32^{\left( {\dfrac{1}{{\dfrac{5}{6}}}} \right)}}\]
\[ \Rightarrow \left( {32} \right){\left( {32} \right)^{\dfrac{1}{6}}}{\left( {32} \right)^{\dfrac{1}{{36}}}}.......\infty = {32^{\left( {\dfrac{6}{5}} \right)}}\]
Rewriting \[32\] in terms of the power of \[2\], we get
\[ \Rightarrow \left( {32} \right){\left( {32} \right)^{\dfrac{1}{6}}}{\left( {32} \right)^{\dfrac{1}{{36}}}}.......\infty = {2^{^5}}^{\left( {\dfrac{6}{5}} \right)}\]
Now, by using the formula \[{\left( {{a^m}} \right)^n} = {a^{mn}}\], we have
\[ \Rightarrow \left( {32} \right){\left( {32} \right)^{\dfrac{1}{6}}}{\left( {32} \right)^{\dfrac{1}{{36}}}}.......\infty = {2^6}\]
\[ \Rightarrow \left( {32} \right){\left( {32} \right)^{\dfrac{1}{6}}}{\left( {32} \right)^{\dfrac{1}{{36}}}}.......\infty = 64\]
Therefore, the product \[\left( {32} \right){\left( {32} \right)^{\dfrac{1}{6}}}{\left( {32} \right)^{\dfrac{1}{{36}}}}.......\infty \] is \[64\].
Note:
Here, we need to remember the basics of the Geometric Series and Geometric Sequence. The properties of G.P. are:
1. If every term of G.P. is multiplied or divided by a non-zero number, then the resulting terms are also in G.P.
2. If the common ratio is negative, then the result will alternate between positive and negative.
3. If the common ratio is greater than 1 then there will be an exponential growth towards infinity (positive).
4. If the common ratio is less than \[-1\] then there will be an exponential growth towards infinity (positive and negative).
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
10 examples of friction in our daily life
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What is pollution? How many types of pollution? Define it