Answer
Verified
429.3k+ views
Hint: Here we will use the formula for finding the probability which states that the probability for occurring any event will be equals to Number of favorable outcomes divided by the total number of favorable/possible outcomes:
\[{\text{Probability}} = \dfrac{{{\text{Number of outcomes}}}}{{{\text{Total number of outcomes}}}}\]
Complete step-by-step solution:
Step 1: It is given in the question that the probability of India winning a test match is \[\dfrac{1}{2}\] . By relating this with the probability formula we can say that from \[5\] total matches, India will win \[2\] out of it.
Step 2: Since India’s second win of the match occurs at the third test, we will make cases out of it as shown below:
Case I: India will win the first and third match (W, L, W), where W represents won and L represents Loss. The probability of winning a match is \[\dfrac{1}{2}\] as given in the question and for not winning is also \[\dfrac{1}{2}\] because the sum of probability will be always \[1\].
\[ \Rightarrow {\text{Probability}} = \dfrac{1}{2} \times \dfrac{1}{2} \times \dfrac{1}{2}\]
By multiplying into the RHS side of the expression, we get:
\[ \Rightarrow {\text{Probability}} = \dfrac{1}{8}\]
Case II: India will win the second and third match (L, W, W).
\[ \Rightarrow {\text{Probability}} = \dfrac{1}{2} \times \dfrac{1}{2} \times \dfrac{1}{2}\]
By multiplying into the RHS side of the expression, we get:
\[ \Rightarrow {\text{Probability}} = \dfrac{1}{8}\]
Step 3: So, the final probability that in a \[5\] match series India’s second win occurs at the third test is:
\[ \Rightarrow {\text{Probability}} = \operatorname{P} \left( {{\text{case I}}} \right) + {\text{P}}\left( {{\text{case II}}} \right)\]
By substituting the values of probability of case I and II, we get:
\[ \Rightarrow {\text{Probability}} = \dfrac{1}{8} + \dfrac{1}{8}\]
By taking \[8\] common into the RHS side, we get:
\[ \Rightarrow {\text{Probability}} = \dfrac{2}{8}\]
By simplifying the term into the RHS side, we get:
\[ \Rightarrow {\text{Probability}} = \dfrac{1}{4}\]
\[\therefore \]Option B is correct.
Note: Students need to remember some basic points about the probability that the range of the probability will always lie between \[0 \leqslant {\text{P(A)}} \leqslant {\text{1}}\] .
\[{\text{Probability}} = \dfrac{{{\text{Number of outcomes}}}}{{{\text{Total number of outcomes}}}}\]
Complete step-by-step solution:
Step 1: It is given in the question that the probability of India winning a test match is \[\dfrac{1}{2}\] . By relating this with the probability formula we can say that from \[5\] total matches, India will win \[2\] out of it.
Step 2: Since India’s second win of the match occurs at the third test, we will make cases out of it as shown below:
Case I: India will win the first and third match (W, L, W), where W represents won and L represents Loss. The probability of winning a match is \[\dfrac{1}{2}\] as given in the question and for not winning is also \[\dfrac{1}{2}\] because the sum of probability will be always \[1\].
\[ \Rightarrow {\text{Probability}} = \dfrac{1}{2} \times \dfrac{1}{2} \times \dfrac{1}{2}\]
By multiplying into the RHS side of the expression, we get:
\[ \Rightarrow {\text{Probability}} = \dfrac{1}{8}\]
Case II: India will win the second and third match (L, W, W).
\[ \Rightarrow {\text{Probability}} = \dfrac{1}{2} \times \dfrac{1}{2} \times \dfrac{1}{2}\]
By multiplying into the RHS side of the expression, we get:
\[ \Rightarrow {\text{Probability}} = \dfrac{1}{8}\]
Step 3: So, the final probability that in a \[5\] match series India’s second win occurs at the third test is:
\[ \Rightarrow {\text{Probability}} = \operatorname{P} \left( {{\text{case I}}} \right) + {\text{P}}\left( {{\text{case II}}} \right)\]
By substituting the values of probability of case I and II, we get:
\[ \Rightarrow {\text{Probability}} = \dfrac{1}{8} + \dfrac{1}{8}\]
By taking \[8\] common into the RHS side, we get:
\[ \Rightarrow {\text{Probability}} = \dfrac{2}{8}\]
By simplifying the term into the RHS side, we get:
\[ \Rightarrow {\text{Probability}} = \dfrac{1}{4}\]
\[\therefore \]Option B is correct.
Note: Students need to remember some basic points about the probability that the range of the probability will always lie between \[0 \leqslant {\text{P(A)}} \leqslant {\text{1}}\] .
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Difference Between Plant Cell and Animal Cell