
The principal argument of $\dfrac{i-3}{i-1}$ is:
$\left( a \right)tan^{-1}\dfrac{1}{2}$
$\left( b \right) tan^{-1}\dfrac{3}{2}$
$\left( c \right) tan^{-1}\dfrac{5}{2}$
$\left( d \right) tan^{-1}\dfrac{7}{2}$
Answer
504.3k+ views
Hint: We are asked to find the principal argument of a given complex number. But we see that it is not in the standard $a+bi$ form. So, we first convert this into the standard form and then apply the definition of principal argument to find the answer. We should be aware of some terms such as argument, principal argument which are related to the imaginary numbers in order to solve this question.
Complete step by step answer:
We have $\dfrac{i-3}{i-1}$. We need to first convert this into a standard form. For this, we multiply both numerator and denominator by $i+1$. Doing this we get:
$\dfrac{i-3}{i-1}\times\dfrac{i+1}{i+1}=\dfrac{i^2+i-3i-3}{i^2-1^2}$
We have used the following identity in denominator:
$\left(a+b\right)\left(a-b\right)=a^2-b^2$
We get:
$\dfrac{-1-2i-3}{-1-1}=\dfrac{-4-2i}{-2}=2+i$
Hence, we have found out the complex number in standard form. Now, we know that the principal argument, $Arg\left(z\right)$of any complex number $z=a+bi$is found out using the following formula:
$Arg\left(z\right)=tan^{-1}\left(\dfrac{b}{a}\right)$ if $a>0$
And
$Arg\left(z\right)=tan^{-1}\left(\dfrac{b}{a}\right)+\pi$ if $a<0$
We have $2+i$ as the complex number. So $a=2$ and $b=1$. We conclude that $a>0$, hence the principal argument will be:
$Arg\left(2+i\right)=tan^{-1}\left(\dfrac{1}{2}\right)$
So, the correct answer is “Option a”.
Note: We can also do the same using the following formula:
$Arg\left(\dfrac{z_1}{z_2}\right)=Arg\left(z_1\right)-Arg\left(z_2\right)$
Here, put $z_1=i-3$ and $z_2=i-1$
Then $Arg\left(z_1\right)=tan^{-1}\dfrac{-1}{3}$
And $Arg\left(z_2\right)=tan^{-1}-1$
So, we have:
$Arg \left(\dfrac{i-3}{i-1}\right)= Arg\left(z_1\right)-Arg\left(z_2\right)$
$= tan^{-1}\dfrac{-1}{3}- tan^{-1}-1$
Now, we use the formula below:
$tan^{-1}A- tan^{-1}B=tan^{-1}\left(\dfrac{A-B}{1+AB}\right)$
Using this we obtain the following:
$Arg \left(\dfrac{i-3}{i-1}\right)=tan^{-1}\left(\dfrac{-\dfrac{1}{3}+1}{1+\dfrac{1}{3}}\right)$
$=tan^{-1}\dfrac{1}{2}$
Hence, the answer is obtained correctly. But note that you should use this only when you remember the formula of inverse tan function correctly.
Complete step by step answer:
We have $\dfrac{i-3}{i-1}$. We need to first convert this into a standard form. For this, we multiply both numerator and denominator by $i+1$. Doing this we get:
$\dfrac{i-3}{i-1}\times\dfrac{i+1}{i+1}=\dfrac{i^2+i-3i-3}{i^2-1^2}$
We have used the following identity in denominator:
$\left(a+b\right)\left(a-b\right)=a^2-b^2$
We get:
$\dfrac{-1-2i-3}{-1-1}=\dfrac{-4-2i}{-2}=2+i$
Hence, we have found out the complex number in standard form. Now, we know that the principal argument, $Arg\left(z\right)$of any complex number $z=a+bi$is found out using the following formula:
$Arg\left(z\right)=tan^{-1}\left(\dfrac{b}{a}\right)$ if $a>0$
And
$Arg\left(z\right)=tan^{-1}\left(\dfrac{b}{a}\right)+\pi$ if $a<0$
We have $2+i$ as the complex number. So $a=2$ and $b=1$. We conclude that $a>0$, hence the principal argument will be:
$Arg\left(2+i\right)=tan^{-1}\left(\dfrac{1}{2}\right)$
So, the correct answer is “Option a”.
Note: We can also do the same using the following formula:
$Arg\left(\dfrac{z_1}{z_2}\right)=Arg\left(z_1\right)-Arg\left(z_2\right)$
Here, put $z_1=i-3$ and $z_2=i-1$
Then $Arg\left(z_1\right)=tan^{-1}\dfrac{-1}{3}$
And $Arg\left(z_2\right)=tan^{-1}-1$
So, we have:
$Arg \left(\dfrac{i-3}{i-1}\right)= Arg\left(z_1\right)-Arg\left(z_2\right)$
$= tan^{-1}\dfrac{-1}{3}- tan^{-1}-1$
Now, we use the formula below:
$tan^{-1}A- tan^{-1}B=tan^{-1}\left(\dfrac{A-B}{1+AB}\right)$
Using this we obtain the following:
$Arg \left(\dfrac{i-3}{i-1}\right)=tan^{-1}\left(\dfrac{-\dfrac{1}{3}+1}{1+\dfrac{1}{3}}\right)$
$=tan^{-1}\dfrac{1}{2}$
Hence, the answer is obtained correctly. But note that you should use this only when you remember the formula of inverse tan function correctly.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

