
The polynomial equation of degree 4 having real coefficients with three of its roots as $\left( 2\pm \sqrt{3} \right)\text{ and }\left( 1\pm 2i \right)$ is
\[\begin{align}
& A.{{x}^{4}}-6{{x}^{3}}+14{{x}^{2}}+22x+5=0 \\
& B.{{x}^{4}}-6{{x}^{3}}+19{{x}^{2}}+22x-5=0 \\
& C.{{x}^{4}}-6{{x}^{3}}+19{{x}^{2}}-22x+5=0 \\
& D.{{x}^{4}}-6{{x}^{3}}+14{{x}^{2}}-22x+5=0 \\
\end{align}\]
Answer
573.9k+ views
Hint: To solve this question, we will first obtain a fourth root and for that we will use the fact that imaginary roots always occur in pairs. After this, we will make two different quadratic equations by using $\left( 2\pm \sqrt{3} \right)\text{ and }\left( 1\pm 2i \right)$ separately. Finally, after obtaining 2 quadratic equations we will multiply them to obtain a final 4 degree polynomial.
Complete step-by-step answer:
We have to find a 4 degree polynomial with real coefficient. Let the polynomial be denoted by p(x).
Since, the polynomial is 4 degrees, so it has 4 roots. The roots are given as $2+\sqrt{3}\text{,}2-\sqrt{3}\text{ and }1+2i$
So, we are given 3 roots but one of them is 1+2i and the imaginary root/complex root always occurs in pairs and the pair of (1+2i) is (1-2i).
Therefore, (1-2i) is also a root of our polynomial.
Therefore, we now have all 4 roots as \[2+\sqrt{3}\text{,}2-\sqrt{3},1+2i\text{ and 1-2i}\]
Consider, first two roots: \[\Rightarrow \left( 2+\sqrt{3} \right)\text{ and }\left( 2-\sqrt{3} \right)\]
Any quadratic equation whose roots are $\alpha \text{ and }\beta $ can be formed by writing as
\[\Rightarrow {{x}^{2}}-\left( \text{sum of roots }\alpha \text{ and }\beta \right)x+\left( \text{product of roots }\alpha \text{ and }\beta \right)=0\]
Quadratic polynomial whose roots are $\alpha \text{ and }\beta $ are given as
\[{{x}^{2}}-\left( \alpha +\beta \right)x\left( \alpha \beta \right)=0\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (i)}\]
So, on the similar basis we will construct a quadratic polynomial having roots as \[\Rightarrow \left( 2+\sqrt{3} \right)\text{ and }\left( 2-\sqrt{3} \right)\]
Sum of roots \[\begin{align}
& \Rightarrow 2+\sqrt{3}+2-\sqrt{3}=4+\sqrt{3}-\sqrt{3} \\
& \Rightarrow 4\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (ii)} \\
\end{align}\]
And product of roots \[\Rightarrow \left( 2+\sqrt{3} \right)\left( 2-\sqrt{3} \right)=1\]
Now, we know that \[\Rightarrow \left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}\]
Applying this in above we get:
Product of roots \[\Rightarrow {{\left( 2 \right)}^{2}}-{{\left( \sqrt{3} \right)}^{2}}=4-3=1\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (iii)}\]
Forming a quadratic equation whose roots are $\left( 2+\sqrt{3} \right)\text{ and }\left( 2-\sqrt{3} \right)$ by form of equation (i) using equation (ii) and (iii) we get:
\[\begin{align}
& {{x}^{2}}-\left( 4 \right)x+1=0 \\
& \Rightarrow {{x}^{2}}-4x+1=0\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (iv)} \\
\end{align}\]
Similarly, we will try to obtain a quadratic polynomial whose roots are (1+2i) and (1-2i).
Sum of roots \[\Rightarrow 1+2i+1-2\text{i}=2+2i-2i=2\]
And product of roots \[\Rightarrow \left( 1+2i \right)\left( 1-2\text{i} \right)\]
Again using \[\Rightarrow \left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}\] we get:
Product of roots:
\[\begin{align}
& \Rightarrow \left( {{1}^{2}}-{{\left( 2i \right)}^{2}} \right)={{1}^{2}}-4{{i}^{2}} \\
& \Rightarrow {{i}^{2}}=-1 \\
& \text{Product}=1+4=5 \\
\end{align}\]
So, the quadratic equation formed using roots (1+2i) and (1-2i) as given in equation (i) is as below:
\[{{x}^{2}}-2x+5=0\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (v)}\]
So finally we have obtained two quadratic equations from (iv) and (v) equation. Multiplying (iv) and (v) to get p(x).
\[\begin{align}
& p\left( x \right)=\left( {{x}^{2}}-2x+5 \right)\left( {{x}^{2}}-4x+1 \right) \\
& \Rightarrow {{x}^{2}}\left( {{x}^{2}}-4x+1 \right)-2x\left( {{x}^{2}}-4x+1 \right)+5\left( {{x}^{2}}-4x+1 \right) \\
& \Rightarrow {{x}^{4}}-4{{x}^{3}}+{{x}^{2}}-2{{x}^{3}}+8{{x}^{2}}-2x+5{{x}^{2}}-20x+5 \\
& \Rightarrow {{x}^{4}}-6{{x}^{3}}+14{{x}^{2}}-22x+5 \\
\end{align}\]
So, our required polynomial is
\[p\left( x \right)={{x}^{4}}-6{{x}^{3}}+14{{x}^{2}}-22x+5\] which is option D.
So, the correct answer is “Option D”.
Note: The possibility of mistake in this question can be not trying to obtain the fourth root of p(x) and directly calculating the value of p(x). Always remember that, a ‘n’ degree polynomial has n roots whether real or imaginary.
Also, imaginary or complex roots always occur in pairs if $\left( \alpha +i\beta \right)$ is a root then $\left( \alpha -i\beta \right)$ is also a root of the same polynomial.
Complete step-by-step answer:
We have to find a 4 degree polynomial with real coefficient. Let the polynomial be denoted by p(x).
Since, the polynomial is 4 degrees, so it has 4 roots. The roots are given as $2+\sqrt{3}\text{,}2-\sqrt{3}\text{ and }1+2i$
So, we are given 3 roots but one of them is 1+2i and the imaginary root/complex root always occurs in pairs and the pair of (1+2i) is (1-2i).
Therefore, (1-2i) is also a root of our polynomial.
Therefore, we now have all 4 roots as \[2+\sqrt{3}\text{,}2-\sqrt{3},1+2i\text{ and 1-2i}\]
Consider, first two roots: \[\Rightarrow \left( 2+\sqrt{3} \right)\text{ and }\left( 2-\sqrt{3} \right)\]
Any quadratic equation whose roots are $\alpha \text{ and }\beta $ can be formed by writing as
\[\Rightarrow {{x}^{2}}-\left( \text{sum of roots }\alpha \text{ and }\beta \right)x+\left( \text{product of roots }\alpha \text{ and }\beta \right)=0\]
Quadratic polynomial whose roots are $\alpha \text{ and }\beta $ are given as
\[{{x}^{2}}-\left( \alpha +\beta \right)x\left( \alpha \beta \right)=0\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (i)}\]
So, on the similar basis we will construct a quadratic polynomial having roots as \[\Rightarrow \left( 2+\sqrt{3} \right)\text{ and }\left( 2-\sqrt{3} \right)\]
Sum of roots \[\begin{align}
& \Rightarrow 2+\sqrt{3}+2-\sqrt{3}=4+\sqrt{3}-\sqrt{3} \\
& \Rightarrow 4\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (ii)} \\
\end{align}\]
And product of roots \[\Rightarrow \left( 2+\sqrt{3} \right)\left( 2-\sqrt{3} \right)=1\]
Now, we know that \[\Rightarrow \left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}\]
Applying this in above we get:
Product of roots \[\Rightarrow {{\left( 2 \right)}^{2}}-{{\left( \sqrt{3} \right)}^{2}}=4-3=1\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (iii)}\]
Forming a quadratic equation whose roots are $\left( 2+\sqrt{3} \right)\text{ and }\left( 2-\sqrt{3} \right)$ by form of equation (i) using equation (ii) and (iii) we get:
\[\begin{align}
& {{x}^{2}}-\left( 4 \right)x+1=0 \\
& \Rightarrow {{x}^{2}}-4x+1=0\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (iv)} \\
\end{align}\]
Similarly, we will try to obtain a quadratic polynomial whose roots are (1+2i) and (1-2i).
Sum of roots \[\Rightarrow 1+2i+1-2\text{i}=2+2i-2i=2\]
And product of roots \[\Rightarrow \left( 1+2i \right)\left( 1-2\text{i} \right)\]
Again using \[\Rightarrow \left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}\] we get:
Product of roots:
\[\begin{align}
& \Rightarrow \left( {{1}^{2}}-{{\left( 2i \right)}^{2}} \right)={{1}^{2}}-4{{i}^{2}} \\
& \Rightarrow {{i}^{2}}=-1 \\
& \text{Product}=1+4=5 \\
\end{align}\]
So, the quadratic equation formed using roots (1+2i) and (1-2i) as given in equation (i) is as below:
\[{{x}^{2}}-2x+5=0\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (v)}\]
So finally we have obtained two quadratic equations from (iv) and (v) equation. Multiplying (iv) and (v) to get p(x).
\[\begin{align}
& p\left( x \right)=\left( {{x}^{2}}-2x+5 \right)\left( {{x}^{2}}-4x+1 \right) \\
& \Rightarrow {{x}^{2}}\left( {{x}^{2}}-4x+1 \right)-2x\left( {{x}^{2}}-4x+1 \right)+5\left( {{x}^{2}}-4x+1 \right) \\
& \Rightarrow {{x}^{4}}-4{{x}^{3}}+{{x}^{2}}-2{{x}^{3}}+8{{x}^{2}}-2x+5{{x}^{2}}-20x+5 \\
& \Rightarrow {{x}^{4}}-6{{x}^{3}}+14{{x}^{2}}-22x+5 \\
\end{align}\]
So, our required polynomial is
\[p\left( x \right)={{x}^{4}}-6{{x}^{3}}+14{{x}^{2}}-22x+5\] which is option D.
So, the correct answer is “Option D”.
Note: The possibility of mistake in this question can be not trying to obtain the fourth root of p(x) and directly calculating the value of p(x). Always remember that, a ‘n’ degree polynomial has n roots whether real or imaginary.
Also, imaginary or complex roots always occur in pairs if $\left( \alpha +i\beta \right)$ is a root then $\left( \alpha -i\beta \right)$ is also a root of the same polynomial.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

