The points $\left( { - a, - b} \right),\left( {a,b} \right),\left( {0,0} \right)$ and $\left( {{a^2},ab} \right),a \ne 0,b \ne 0$ are
${\text{A}}{\text{.}}$ Collinear
${\text{B}}{\text{.}}$ Vertices of a parallelogram
${\text{C}}{\text{.}}$ Vertices of rectangle
${\text{D}}{\text{.}}$ Lie on a circle
Last updated date: 25th Mar 2023
•
Total views: 309.3k
•
Views today: 2.89k
Answer
309.3k+ views
Hint- Here, we will find the slopes of the lines joining these points in order to find the relation between the points.
Let the given points be \[{\text{A}}\left( { - a, - b} \right),{\text{B}}\left( {a,b} \right),{\text{C}}\left( {0,0} \right)\] and \[{\text{D}}\left( {{a^2},ab} \right)\]
Since, we know that the slope of the joining any two points \[\left( {{x_1},{y_1}} \right)\] and \[\left( {{x_2},{y_2}} \right)\] is given by \[m = \dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}\].
Here, let us find out the slopes of all the lines i.e., AB, BC, CD, AD obtained by joining any two adjacent points.
Slope of line AB, \[{m_{AB}} = \dfrac{{b - \left( { - b} \right)}}{{a - \left( { - a} \right)}} = \dfrac{{b + b}}{{a + a}} = \dfrac{{2b}}{{2a}} = \dfrac{b}{a}\]
Slope of line BC, \[{m_{BC}} = \dfrac{{0 - b}}{{0 - a}} = \dfrac{{ - b}}{{ - a}} = \dfrac{b}{a}\]
Slope of line CD, \[{m_{CD}} = \dfrac{{ab - 0}}{{{a^2} - 0}} = \dfrac{{ab}}{{{a^2}}} = \dfrac{b}{a}\]
Slope of line AD, \[{m_{AD}} = \dfrac{{ab - \left( { - b} \right)}}{{{a^2} - \left( { - a} \right)}} = \dfrac{{ab + b}}{{{a^2} + a}} = \dfrac{{b\left( {a + 1} \right)}}{{a\left( {a + 1} \right)}} = \dfrac{b}{a}\]
Clearly, slopes of all the lines AB, BC, CD and AD are equal i.e., \[{m_{AB}} = {m_{BC}} = {m_{CD}} = {m_{AD}}\]
Therefore, we can say that all the given points \[{\text{A}}\left( { - a, - b} \right),{\text{B}}\left( {a,b} \right),{\text{C}}\left( {0,0} \right)\] and \[{\text{D}}\left( {{a^2},ab} \right)\] are collinear since the lines joining these points are having equal slopes.
Therefore, option A is correct.
Note- These type of problems can be solved by comparing the values of the slopes obtained by joining any two adjacent points. If all the values of these slopes are equal then, these points are collinear and if not then these are non-collinear.
Let the given points be \[{\text{A}}\left( { - a, - b} \right),{\text{B}}\left( {a,b} \right),{\text{C}}\left( {0,0} \right)\] and \[{\text{D}}\left( {{a^2},ab} \right)\]
Since, we know that the slope of the joining any two points \[\left( {{x_1},{y_1}} \right)\] and \[\left( {{x_2},{y_2}} \right)\] is given by \[m = \dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}\].
Here, let us find out the slopes of all the lines i.e., AB, BC, CD, AD obtained by joining any two adjacent points.
Slope of line AB, \[{m_{AB}} = \dfrac{{b - \left( { - b} \right)}}{{a - \left( { - a} \right)}} = \dfrac{{b + b}}{{a + a}} = \dfrac{{2b}}{{2a}} = \dfrac{b}{a}\]
Slope of line BC, \[{m_{BC}} = \dfrac{{0 - b}}{{0 - a}} = \dfrac{{ - b}}{{ - a}} = \dfrac{b}{a}\]
Slope of line CD, \[{m_{CD}} = \dfrac{{ab - 0}}{{{a^2} - 0}} = \dfrac{{ab}}{{{a^2}}} = \dfrac{b}{a}\]
Slope of line AD, \[{m_{AD}} = \dfrac{{ab - \left( { - b} \right)}}{{{a^2} - \left( { - a} \right)}} = \dfrac{{ab + b}}{{{a^2} + a}} = \dfrac{{b\left( {a + 1} \right)}}{{a\left( {a + 1} \right)}} = \dfrac{b}{a}\]
Clearly, slopes of all the lines AB, BC, CD and AD are equal i.e., \[{m_{AB}} = {m_{BC}} = {m_{CD}} = {m_{AD}}\]
Therefore, we can say that all the given points \[{\text{A}}\left( { - a, - b} \right),{\text{B}}\left( {a,b} \right),{\text{C}}\left( {0,0} \right)\] and \[{\text{D}}\left( {{a^2},ab} \right)\] are collinear since the lines joining these points are having equal slopes.
Therefore, option A is correct.
Note- These type of problems can be solved by comparing the values of the slopes obtained by joining any two adjacent points. If all the values of these slopes are equal then, these points are collinear and if not then these are non-collinear.
Recently Updated Pages
Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE
