
The points \[\left( {0,\dfrac{8}{3}} \right),\left( {1,3} \right)\] and \[\left( {82,30} \right)\] are the vertices of,
\[\left( {\text{A}} \right)\]An obtuse angled triangle
\[\left( {\text{B}} \right)\] An acute angled triangle
\[\left( {\text{C}} \right)\] A right-angled triangle
\[\left( {\text{D}} \right)\]None of these
Answer
599.1k+ views
Hint:- Find slope of each line and check for collinearity.
As, three vertices of the triangle are given,
$ \Rightarrow $Let, ${\text{A}}\left( {0,\dfrac{8}{3}} \right),{\text{ }}B\left( {1,3} \right){\text{ }}$and $C\left( {82,30} \right)$be the vertices of a triangle.
And the triangle will be $\Delta {\text{ABC}}$
Let, ${m_1}$be the slope of side AB.
$ \Rightarrow $So, ${m_1} = \left( {\dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}} \right){\text{ }}$where $({x_1},{y_1})$ and $({x_2},{y_2})$ are the points A and B.
$ \Rightarrow $So, ${m_1} = \left( {\dfrac{{3 - \dfrac{8}{3}}}{{1 - 0}}} \right) = \dfrac{1}{3}$
Let, ${m_2}$ be the slope of side BC.
$ \Rightarrow $So, ${m_2} = \left( {\dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}} \right)$ where $({x_1},{y_1})$ and $({x_2},{y_2})$ are the points B and C.
$ \Rightarrow $So, ${m_2} = \left( {\dfrac{{30 - 3}}{{82 - 1}}} \right) = \dfrac{{27}}{{81}} = \dfrac{1}{3}$
$ \Rightarrow $ As we have proved above that, ${m_1} = {m_2} = \dfrac{1}{3}$
And we know that if slopes of two lines are same and passes through same point (here B)
Then the lines are collinear.
So, therefore A, B and C are not the vertices of any triangle.
Because A, B and C lie on the same line. Hence, they are collinear.
Hence, the correct option will be D.
Note:- In such type of questions the easiest and efficient way to find the type of triangle
is by finding the slope of each line. So, first we had to find the slope of each line then we can
also find the length of each side by using distance formula and then we will easily get which type
triangle is given.
As, three vertices of the triangle are given,
$ \Rightarrow $Let, ${\text{A}}\left( {0,\dfrac{8}{3}} \right),{\text{ }}B\left( {1,3} \right){\text{ }}$and $C\left( {82,30} \right)$be the vertices of a triangle.
And the triangle will be $\Delta {\text{ABC}}$
Let, ${m_1}$be the slope of side AB.
$ \Rightarrow $So, ${m_1} = \left( {\dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}} \right){\text{ }}$where $({x_1},{y_1})$ and $({x_2},{y_2})$ are the points A and B.
$ \Rightarrow $So, ${m_1} = \left( {\dfrac{{3 - \dfrac{8}{3}}}{{1 - 0}}} \right) = \dfrac{1}{3}$
Let, ${m_2}$ be the slope of side BC.
$ \Rightarrow $So, ${m_2} = \left( {\dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}} \right)$ where $({x_1},{y_1})$ and $({x_2},{y_2})$ are the points B and C.
$ \Rightarrow $So, ${m_2} = \left( {\dfrac{{30 - 3}}{{82 - 1}}} \right) = \dfrac{{27}}{{81}} = \dfrac{1}{3}$
$ \Rightarrow $ As we have proved above that, ${m_1} = {m_2} = \dfrac{1}{3}$
And we know that if slopes of two lines are same and passes through same point (here B)
Then the lines are collinear.
So, therefore A, B and C are not the vertices of any triangle.
Because A, B and C lie on the same line. Hence, they are collinear.
Hence, the correct option will be D.
Note:- In such type of questions the easiest and efficient way to find the type of triangle
is by finding the slope of each line. So, first we had to find the slope of each line then we can
also find the length of each side by using distance formula and then we will easily get which type
triangle is given.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Trending doubts
What is the difference between lightdependent and lightindependent class 11 biology CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

How are lightdependent and lightindependent reactions class 11 biology CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

