
The point in the interval $[0,2\pi ]$, where $f(x) = {e^x}\sin (x)$ has a maximum slope
$
1)\,\pi /4 \\
2)\,\pi /2 \\
3)\,\pi \\
4)\,3\pi /2 \\
$
Answer
410.4k+ views
Hint: This a question based on basic concepts of differentiation. Firstly, the formula for the slope for any curve $y = f(x)$ is $\dfrac{{dy}}{{dx}}$. Secondly, to find the maximum value of the function we need to find the critical points using differentiation and lastly double differentiate the final equation to confirm whether the point will give a maxima or a minima.
Complete step-by-step solution:
Now we have, $f(x) = {e^x}\sin (x)$
So, slope $ = $$f'(x)$
$ = $ $\dfrac{{d({e^x}\sin (x))}}{{dx}}$
Now, we use the product rule of differentiation $\dfrac{d}{{dx}}\left( {f(x) \times g(x)} \right) = f(x) \times \dfrac{d}{{dx}}\left( {g(x)} \right) + g(x) \times \dfrac{d}{{dx}}\left( {f(x)} \right)$ to find the derivative of expression. So, we get,
$ = $ ${e^x}\dfrac{{d\left( {\sin x} \right)}}{{dx}} + \sin x\dfrac{{d\left( {{e^x}} \right)}}{{dx}}$
Now, we know that the derivative of $\sin x$ with respect to x is $\cos x$. Also, the derivative of ${e^x}$ with respect to x is ${e^x}$. So, we have,
$ = $ ${e^x}\cos x + {e^x}\sin x$
$ = $${e^x}(\sin (x) + \cos (x))$
So, the slope of the curve is represented by the expression ${e^x}(\sin (x) + \cos (x))$. Now, we need to find the critical points for the slope
So, $f''(x)$$ = $ $0$
$ \Rightarrow \dfrac{{d({e^x}(\sin (x) + \cos (x))}}{{dx}} = 0$
Opening the brackets,
$ \Rightarrow \dfrac{{d({e^x}\sin x + {e^x}\cos x)}}{{dx}} = 0$
$ \Rightarrow \dfrac{d}{{dx}}\left( {{e^x}\sin x} \right) + \dfrac{d}{{dx}}\left( {{e^x}\cos x} \right) = 0$
Again using the product rule of differentiation, we get,
\[ \Rightarrow \left[ {{e^x}\dfrac{d}{{dx}}\left( {\sin x} \right) + \left( {\sin x} \right)\dfrac{d}{{dx}}\left( {{e^x}} \right)} \right] + \left[ {{e^x}\dfrac{d}{{dx}}\left( {\cos x} \right) + \left( {\cos x} \right)\dfrac{d}{{dx}}\left( {{e^x}} \right)} \right] = 0\]
Substituting the derivative of $\sin x$, $\cos x$ and ${e^x}$, we get,
\[ \Rightarrow \left[ {{e^x}\cos x + \left( {\sin x} \right)\left( {{e^x}} \right)} \right] + \left[ {{e^x}\left( { - \sin x} \right) + \left( {\cos x} \right)\left( {{e^x}} \right)} \right] = 0\]
\[ \Rightarrow {e^x}\cos x + {e^x}\sin x - {e^x}\sin x + {e^x}\cos x = 0\]
Simplifying the expression, we get,
$ \Rightarrow 2{e^x}\cos (x) = 0$
Dividing both sides of the equation by two, we get,
$ \Rightarrow {e^x}\cos (x) = 0$
Now, we know that exponential function cannot be equal to zero. So, we get, $\cos (x) = 0$.
Now, we know that cosine function is zero for odd multiples of $\left( {\dfrac{\pi }{2}} \right)$.
Hence, $x = \left( {2n + 1} \right)\dfrac{\pi }{2}$
Now, substituting in the values of n as zero and one.
$ \Rightarrow x = \left( {2 \times 0 + 1} \right)\dfrac{\pi }{2}$ and $x = \left( {2 \times 1 + 1} \right)\dfrac{\pi }{2}$
Doing the calculations, we get,
$ \Rightarrow x = \left( {2 \times 0 + 1} \right)\dfrac{\pi }{2}$ and $x = \left( {2 \times 1 + 1} \right)\dfrac{\pi }{2}$
$ \Rightarrow x = \dfrac{\pi }{2}$ and $x = \dfrac{{3\pi }}{2}$
Now, to check which critical point will the maxima or minima, we need to differentiate the above equation again
So, $f'''(x) = \dfrac{{d(2{e^x}\cos (x))}}{{dx}}$
Using the product rule of differentiation, we get,
$ \Rightarrow f'''(x) = 2\left[ {{e^x}\dfrac{{d(\cos x)}}{{dx}} + \cos x\dfrac{{d\left( {{e^x}} \right)}}{{dx}}} \right]$
Substituting the values of derivatives,
$ \Rightarrow f'''(x) = 2\left[ { - {e^x}\sin x + {e^x}\cos x} \right]$
Taking common terms outside the bracket, we get,
$ \Rightarrow f'''(x) = 2{e^x}\left[ {\cos x - \sin x} \right]$
So, substituting both the values of x obtained as critical points, we get,
$f'''\left( {\dfrac{\pi }{2}} \right) = 2{e^{\left( {\dfrac{\pi }{2}} \right)}}\left[ {\cos \left( {\dfrac{\pi }{2}} \right) - \sin \left( {\dfrac{\pi }{2}} \right)} \right]$
We know the values of cosine and sine for $\dfrac{\pi }{2}$ radians.
$ \Rightarrow f'''\left( {\dfrac{\pi }{2}} \right) = 2{e^{\left( {\dfrac{\pi }{2}} \right)}}\left[ {0 - 1} \right]$
$ \Rightarrow f'''\left( {\dfrac{\pi }{2}} \right) = - 2{e^{\left( {\dfrac{\pi }{2}} \right)}}$
Similarly, $f'''\left( {\dfrac{{3\pi }}{2}} \right) = 2{e^{\left( {\dfrac{{3\pi }}{2}} \right)}}\left[ {\cos \left( {\dfrac{{3\pi }}{2}} \right) - \sin \left( {\dfrac{{3\pi }}{2}} \right)} \right]$
We know the values of cosine and sine for $\dfrac{{3\pi }}{2}$ radians.
$ \Rightarrow f'''\left( {\dfrac{{3\pi }}{2}} \right) = 2{e^{\left( {\dfrac{{3\pi }}{2}} \right)}}\left[ {0 - \left( { - 1} \right)} \right]$
$ \Rightarrow f'''\left( {\dfrac{{3\pi }}{2}} \right) = 2{e^{\left( {\dfrac{{3\pi }}{2}} \right)}}$
Now, we know that exponential function is always positive.
So, the function has maxima for $x = \dfrac{\pi }{2}$ as the second derivative is negative for the value. Similarly, the function has minima for $x = \dfrac{{3\pi }}{2}$ as the second derivative is positive for the value.
So, the maximum value of slope is for $x = \dfrac{\pi }{2}$.
Note: We need to know the product rule and basics of differentiation before solving such questions. We must know the expressions for the slope and normal of curves to get to the required answer. Care should be taken while handling the calculative steps. Simplification rules may be used to ease the calculations and to deal with expressions.
Complete step-by-step solution:
Now we have, $f(x) = {e^x}\sin (x)$
So, slope $ = $$f'(x)$
$ = $ $\dfrac{{d({e^x}\sin (x))}}{{dx}}$
Now, we use the product rule of differentiation $\dfrac{d}{{dx}}\left( {f(x) \times g(x)} \right) = f(x) \times \dfrac{d}{{dx}}\left( {g(x)} \right) + g(x) \times \dfrac{d}{{dx}}\left( {f(x)} \right)$ to find the derivative of expression. So, we get,
$ = $ ${e^x}\dfrac{{d\left( {\sin x} \right)}}{{dx}} + \sin x\dfrac{{d\left( {{e^x}} \right)}}{{dx}}$
Now, we know that the derivative of $\sin x$ with respect to x is $\cos x$. Also, the derivative of ${e^x}$ with respect to x is ${e^x}$. So, we have,
$ = $ ${e^x}\cos x + {e^x}\sin x$
$ = $${e^x}(\sin (x) + \cos (x))$
So, the slope of the curve is represented by the expression ${e^x}(\sin (x) + \cos (x))$. Now, we need to find the critical points for the slope
So, $f''(x)$$ = $ $0$
$ \Rightarrow \dfrac{{d({e^x}(\sin (x) + \cos (x))}}{{dx}} = 0$
Opening the brackets,
$ \Rightarrow \dfrac{{d({e^x}\sin x + {e^x}\cos x)}}{{dx}} = 0$
$ \Rightarrow \dfrac{d}{{dx}}\left( {{e^x}\sin x} \right) + \dfrac{d}{{dx}}\left( {{e^x}\cos x} \right) = 0$
Again using the product rule of differentiation, we get,
\[ \Rightarrow \left[ {{e^x}\dfrac{d}{{dx}}\left( {\sin x} \right) + \left( {\sin x} \right)\dfrac{d}{{dx}}\left( {{e^x}} \right)} \right] + \left[ {{e^x}\dfrac{d}{{dx}}\left( {\cos x} \right) + \left( {\cos x} \right)\dfrac{d}{{dx}}\left( {{e^x}} \right)} \right] = 0\]
Substituting the derivative of $\sin x$, $\cos x$ and ${e^x}$, we get,
\[ \Rightarrow \left[ {{e^x}\cos x + \left( {\sin x} \right)\left( {{e^x}} \right)} \right] + \left[ {{e^x}\left( { - \sin x} \right) + \left( {\cos x} \right)\left( {{e^x}} \right)} \right] = 0\]
\[ \Rightarrow {e^x}\cos x + {e^x}\sin x - {e^x}\sin x + {e^x}\cos x = 0\]
Simplifying the expression, we get,
$ \Rightarrow 2{e^x}\cos (x) = 0$
Dividing both sides of the equation by two, we get,
$ \Rightarrow {e^x}\cos (x) = 0$
Now, we know that exponential function cannot be equal to zero. So, we get, $\cos (x) = 0$.
Now, we know that cosine function is zero for odd multiples of $\left( {\dfrac{\pi }{2}} \right)$.
Hence, $x = \left( {2n + 1} \right)\dfrac{\pi }{2}$
Now, substituting in the values of n as zero and one.
$ \Rightarrow x = \left( {2 \times 0 + 1} \right)\dfrac{\pi }{2}$ and $x = \left( {2 \times 1 + 1} \right)\dfrac{\pi }{2}$
Doing the calculations, we get,
$ \Rightarrow x = \left( {2 \times 0 + 1} \right)\dfrac{\pi }{2}$ and $x = \left( {2 \times 1 + 1} \right)\dfrac{\pi }{2}$
$ \Rightarrow x = \dfrac{\pi }{2}$ and $x = \dfrac{{3\pi }}{2}$
Now, to check which critical point will the maxima or minima, we need to differentiate the above equation again
So, $f'''(x) = \dfrac{{d(2{e^x}\cos (x))}}{{dx}}$
Using the product rule of differentiation, we get,
$ \Rightarrow f'''(x) = 2\left[ {{e^x}\dfrac{{d(\cos x)}}{{dx}} + \cos x\dfrac{{d\left( {{e^x}} \right)}}{{dx}}} \right]$
Substituting the values of derivatives,
$ \Rightarrow f'''(x) = 2\left[ { - {e^x}\sin x + {e^x}\cos x} \right]$
Taking common terms outside the bracket, we get,
$ \Rightarrow f'''(x) = 2{e^x}\left[ {\cos x - \sin x} \right]$
So, substituting both the values of x obtained as critical points, we get,
$f'''\left( {\dfrac{\pi }{2}} \right) = 2{e^{\left( {\dfrac{\pi }{2}} \right)}}\left[ {\cos \left( {\dfrac{\pi }{2}} \right) - \sin \left( {\dfrac{\pi }{2}} \right)} \right]$
We know the values of cosine and sine for $\dfrac{\pi }{2}$ radians.
$ \Rightarrow f'''\left( {\dfrac{\pi }{2}} \right) = 2{e^{\left( {\dfrac{\pi }{2}} \right)}}\left[ {0 - 1} \right]$
$ \Rightarrow f'''\left( {\dfrac{\pi }{2}} \right) = - 2{e^{\left( {\dfrac{\pi }{2}} \right)}}$
Similarly, $f'''\left( {\dfrac{{3\pi }}{2}} \right) = 2{e^{\left( {\dfrac{{3\pi }}{2}} \right)}}\left[ {\cos \left( {\dfrac{{3\pi }}{2}} \right) - \sin \left( {\dfrac{{3\pi }}{2}} \right)} \right]$
We know the values of cosine and sine for $\dfrac{{3\pi }}{2}$ radians.
$ \Rightarrow f'''\left( {\dfrac{{3\pi }}{2}} \right) = 2{e^{\left( {\dfrac{{3\pi }}{2}} \right)}}\left[ {0 - \left( { - 1} \right)} \right]$
$ \Rightarrow f'''\left( {\dfrac{{3\pi }}{2}} \right) = 2{e^{\left( {\dfrac{{3\pi }}{2}} \right)}}$
Now, we know that exponential function is always positive.
So, the function has maxima for $x = \dfrac{\pi }{2}$ as the second derivative is negative for the value. Similarly, the function has minima for $x = \dfrac{{3\pi }}{2}$ as the second derivative is positive for the value.
So, the maximum value of slope is for $x = \dfrac{\pi }{2}$.
Note: We need to know the product rule and basics of differentiation before solving such questions. We must know the expressions for the slope and normal of curves to get to the required answer. Care should be taken while handling the calculative steps. Simplification rules may be used to ease the calculations and to deal with expressions.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Economics: Engaging Questions & Answers for Success

Trending doubts
Most of the Sinhalaspeaking people in Sri Lanka are class 12 social science CBSE

Give 10 examples of unisexual and bisexual flowers

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Write a short note on Franklands reaction class 12 chemistry CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE
