
The Point from where a ball is projected is taken as the origin of the coordinate axes. The $x$ and $y$ components of its displacement are given by $x = 6t$ and $y = 8t - 5{t^2}$. What is the velocity of projection?
Answer
503.4k+ views
Hint: In order to find the magnitude of velocity we will use the derivative of displacement in both the components in given $x$ and $y$ direction and then using vector algebra we will find net magnitude of the velocity and its direction.
Complete step by step answer:
As we know that velocity and displacement are related as ${v_x} = \dfrac{{dx}}{{dt}}$ in the x direction and in y direction it can be calculated as ${v_y} = \dfrac{{dy}}{{dt}}$ .
we have given that, $x = 6t$ taking derivative of this we will get,
${v_x} = \dfrac{{dx}}{{dt}}$
$\Rightarrow {v_x} = 6\hat{ i}$
Now, we will find the velocity in y direction using $y = 8t - 5{t^2}$ we will get,
${v_y} = \dfrac{{dy}}{{dt}}$
$\Rightarrow {v_y} = 8 - 10t$
In origin we have $t = 0$ so we get,
${v_y} = 8\hat j$
Hence, net velocity can be written together in the vector form as:
$\vec v = 6\hat i + 8\hat j$
Now, the resultant velocity of the projectile can be found using the formula we have,
$\left| v \right| = \sqrt {{v_x}^2 + {v_y}^2} $
On putting the magnitudes we get,
$\left| v \right| = \sqrt {64 + 36} $
$\therefore \left| v \right| = 10\,m\,{\sec ^{ - 1}}$
Hence, the magnitude of velocity of the projectile is $\left| v \right| = 10\,m\,{\sec ^{ - 1}}$ and its direction of velocity of the projectile can be written as $\vec v = 6\hat i + 8\hat j$.
Note: It should be remembered that, the basic formulas of derivation of one variable with respect to other with functions like $\dfrac{{d({x^n})}}{{dx}} = n{x^{n - 1}}$ and the resultant magnitude of a given vector in two dimensional form by calculated as $R = \sqrt {{P^2} + {Q^2}} $ where $P$ and $Q$ are the two components of a vector $R$ in $x$ and $y$ directions respectively.
Complete step by step answer:
As we know that velocity and displacement are related as ${v_x} = \dfrac{{dx}}{{dt}}$ in the x direction and in y direction it can be calculated as ${v_y} = \dfrac{{dy}}{{dt}}$ .
we have given that, $x = 6t$ taking derivative of this we will get,
${v_x} = \dfrac{{dx}}{{dt}}$
$\Rightarrow {v_x} = 6\hat{ i}$
Now, we will find the velocity in y direction using $y = 8t - 5{t^2}$ we will get,
${v_y} = \dfrac{{dy}}{{dt}}$
$\Rightarrow {v_y} = 8 - 10t$
In origin we have $t = 0$ so we get,
${v_y} = 8\hat j$
Hence, net velocity can be written together in the vector form as:
$\vec v = 6\hat i + 8\hat j$
Now, the resultant velocity of the projectile can be found using the formula we have,
$\left| v \right| = \sqrt {{v_x}^2 + {v_y}^2} $
On putting the magnitudes we get,
$\left| v \right| = \sqrt {64 + 36} $
$\therefore \left| v \right| = 10\,m\,{\sec ^{ - 1}}$
Hence, the magnitude of velocity of the projectile is $\left| v \right| = 10\,m\,{\sec ^{ - 1}}$ and its direction of velocity of the projectile can be written as $\vec v = 6\hat i + 8\hat j$.
Note: It should be remembered that, the basic formulas of derivation of one variable with respect to other with functions like $\dfrac{{d({x^n})}}{{dx}} = n{x^{n - 1}}$ and the resultant magnitude of a given vector in two dimensional form by calculated as $R = \sqrt {{P^2} + {Q^2}} $ where $P$ and $Q$ are the two components of a vector $R$ in $x$ and $y$ directions respectively.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

