
The perpendicular distance from the origin to the plane containing the two lines, \[\dfrac{x+2}{3}=\dfrac{y-2}{5}=\dfrac{z+5}{7}\] and \[\dfrac{x-1}{1}=\dfrac{y-4}{4}=\dfrac{z+4}{7}\].
\[\begin{align}
& A)\dfrac{11}{\sqrt{6}} \\
& B)6\sqrt{11} \\
& C)\sqrt{11} \\
& D)11\sqrt{6} \\
\end{align}\]
Answer
590.4k+ views
Hint: We know that the plane containing the two lines, \[\dfrac{x-{{x}_{1}}}{{{a}_{1}}}=\dfrac{y-{{y}_{1}}}{{{b}_{1}}}=\dfrac{z-{{z}_{1}}}{{{c}_{1}}}\] and \[\dfrac{x-{{x}_{2}}}{{{a}_{2}}}=\dfrac{y-{{y}_{2}}}{{{b}_{2}}}=\dfrac{z-{{z}_{2}}}{{{c}_{2}}}\] is \[\left| \begin{matrix}
x-{{x}_{1}} & y-{{y}_{1}} & z-{{z}_{1}} \\
{{a}_{1}} & {{b}_{1}} & {{c}_{1}} \\
{{a}_{2}} & {{b}_{2}} & {{c}_{2}} \\
\end{matrix} \right|=0\]. We know that the distance between origin and \[ax+by+cz+d=0\] is equal to \[\dfrac{\left| d \right|}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}}\]. By using these concepts, we can get the perpendicular distance from the origin to the plane containing the two lines, \[\dfrac{x+2}{3}=\dfrac{y-2}{5}=\dfrac{z+5}{7}\] and \[\dfrac{x-1}{1}=\dfrac{y-4}{4}=\dfrac{z+4}{7}\].
Complete step-by-step solution:
Now we should find the plane containing the two lines, \[\dfrac{x+2}{3}=\dfrac{y-2}{5}=\dfrac{z+5}{7}\] and \[\dfrac{x-1}{1}=\dfrac{y-4}{4}=\dfrac{z+4}{7}\].
We know that the plane containing the two lines, \[\dfrac{x-{{x}_{1}}}{{{a}_{1}}}=\dfrac{y-{{y}_{1}}}{{{b}_{1}}}=\dfrac{z-{{z}_{1}}}{{{c}_{1}}}\] and \[\dfrac{x-{{x}_{2}}}{{{a}_{2}}}=\dfrac{y-{{y}_{2}}}{{{b}_{2}}}=\dfrac{z-{{z}_{2}}}{{{c}_{2}}}\] is \[\left| \begin{matrix}
x-{{x}_{1}} & y-{{y}_{1}} & z-{{z}_{1}} \\
{{a}_{1}} & {{b}_{1}} & {{c}_{1}} \\
{{a}_{2}} & {{b}_{2}} & {{c}_{2}} \\
\end{matrix} \right|=0\].
By using the above concept, we can find the plane containing the two lines, \[\dfrac{x+2}{3}=\dfrac{y-2}{5}=\dfrac{z+5}{7}\] and \[\dfrac{x-1}{1}=\dfrac{y-4}{4}=\dfrac{z+4}{7}\].
Let us assume this plane containing the two lines, \[\dfrac{x+2}{3}=\dfrac{y-2}{5}=\dfrac{z+5}{7}\] and \[\dfrac{x-1}{1}=\dfrac{y-4}{4}=\dfrac{z+4}{7}\] as plane P.
\[\Rightarrow P\equiv \left| \begin{matrix}
x+2 & y-2 & z+5 \\
3 & 5 & 7 \\
1 & 4 & 7 \\
\end{matrix} \right|=0\]
We know that the value of \[\left| \begin{matrix}
a & b & c \\
d & e & f \\
g & h & i \\
\end{matrix} \right|=a\left( ei-hf \right)-b\left( di-fg \right)+c\left( dh-ge \right)\].
Now by using this concept, we should find the equation of plane P.
\[\begin{align}
& \Rightarrow P\equiv \left| \begin{matrix}
x+2 & y-2 & z+5 \\
3 & 5 & 7 \\
1 & 4 & 7 \\
\end{matrix} \right|=0 \\
& \Rightarrow P\equiv \left( x+2 \right)\left( (5)(7)-(4)(7) \right)-\left( y-2 \right)\left( (3)(7)-(7)(1) \right)+\left( z+5 \right)\left( (3)(7)-(1)(7) \right)=0 \\
& \Rightarrow P\equiv \left( x+2 \right)\left( 35-28 \right)-\left( y-2 \right)\left( 21-7 \right)+\left( z+5 \right)\left( 21-14 \right)=0 \\
& \Rightarrow P\equiv \left( x+2 \right)\left( 7 \right)-\left( y-2 \right)\left( 14 \right)+\left( z+5 \right)\left( 7 \right)=0 \\
& \Rightarrow P\equiv 7x+14-14y+28+7z+35=0 \\
& \Rightarrow P\equiv 7x-14y+7z+77=0 \\
& \Rightarrow P\equiv 7\left( x-2y+z+11 \right)=0 \\
& \Rightarrow P\equiv x-2y+z+11=0.....(1) \\
\end{align}\]
From equation (1), it is clear that \[x-2y+z+11=0\] is the equation of plane containing the two lines, \[\dfrac{x+2}{3}=\dfrac{y-2}{5}=\dfrac{z+5}{7}\] and \[\dfrac{x-1}{1}=\dfrac{y-4}{4}=\dfrac{z+4}{7}\].
Now we should find the distance between origin and \[x-2y+z+11=0\].
We know that the distance between origin and \[ax+by+cz+d=0\] is equal to \[\dfrac{\left| d \right|}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}}\].
Now by using this concept, we can find the distance between origin and \[x-2y+z+11=0\].
Let us assume this distance is equal to D.
\[\begin{align}
& \Rightarrow D=\dfrac{\left| 11 \right|}{\sqrt{{{1}^{2}}+{{2}^{2}}+{{1}^{2}}}} \\
& \Rightarrow D=\dfrac{11}{\sqrt{6}}....(2) \\
\end{align}\]
From equation (2), it is clear that the distance between origin and \[x-2y+z+11=0\] is equal to \[\dfrac{11}{\sqrt{6}}\].
Hence, option A is correct.
Note: Students may have a misconception that the distance between origin and \[ax+by+cz+d=0\] is equal to \[\dfrac{\left| d \right|}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}+{{d}^{2}}}}\]. If this misconception is followed, then we cannot get the exact value of D. So, this misconception should be avoided. Otherwise, we cannot get correct answer at any cost.
x-{{x}_{1}} & y-{{y}_{1}} & z-{{z}_{1}} \\
{{a}_{1}} & {{b}_{1}} & {{c}_{1}} \\
{{a}_{2}} & {{b}_{2}} & {{c}_{2}} \\
\end{matrix} \right|=0\]. We know that the distance between origin and \[ax+by+cz+d=0\] is equal to \[\dfrac{\left| d \right|}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}}\]. By using these concepts, we can get the perpendicular distance from the origin to the plane containing the two lines, \[\dfrac{x+2}{3}=\dfrac{y-2}{5}=\dfrac{z+5}{7}\] and \[\dfrac{x-1}{1}=\dfrac{y-4}{4}=\dfrac{z+4}{7}\].
Complete step-by-step solution:
Now we should find the plane containing the two lines, \[\dfrac{x+2}{3}=\dfrac{y-2}{5}=\dfrac{z+5}{7}\] and \[\dfrac{x-1}{1}=\dfrac{y-4}{4}=\dfrac{z+4}{7}\].
We know that the plane containing the two lines, \[\dfrac{x-{{x}_{1}}}{{{a}_{1}}}=\dfrac{y-{{y}_{1}}}{{{b}_{1}}}=\dfrac{z-{{z}_{1}}}{{{c}_{1}}}\] and \[\dfrac{x-{{x}_{2}}}{{{a}_{2}}}=\dfrac{y-{{y}_{2}}}{{{b}_{2}}}=\dfrac{z-{{z}_{2}}}{{{c}_{2}}}\] is \[\left| \begin{matrix}
x-{{x}_{1}} & y-{{y}_{1}} & z-{{z}_{1}} \\
{{a}_{1}} & {{b}_{1}} & {{c}_{1}} \\
{{a}_{2}} & {{b}_{2}} & {{c}_{2}} \\
\end{matrix} \right|=0\].
By using the above concept, we can find the plane containing the two lines, \[\dfrac{x+2}{3}=\dfrac{y-2}{5}=\dfrac{z+5}{7}\] and \[\dfrac{x-1}{1}=\dfrac{y-4}{4}=\dfrac{z+4}{7}\].
Let us assume this plane containing the two lines, \[\dfrac{x+2}{3}=\dfrac{y-2}{5}=\dfrac{z+5}{7}\] and \[\dfrac{x-1}{1}=\dfrac{y-4}{4}=\dfrac{z+4}{7}\] as plane P.
\[\Rightarrow P\equiv \left| \begin{matrix}
x+2 & y-2 & z+5 \\
3 & 5 & 7 \\
1 & 4 & 7 \\
\end{matrix} \right|=0\]
We know that the value of \[\left| \begin{matrix}
a & b & c \\
d & e & f \\
g & h & i \\
\end{matrix} \right|=a\left( ei-hf \right)-b\left( di-fg \right)+c\left( dh-ge \right)\].
Now by using this concept, we should find the equation of plane P.
\[\begin{align}
& \Rightarrow P\equiv \left| \begin{matrix}
x+2 & y-2 & z+5 \\
3 & 5 & 7 \\
1 & 4 & 7 \\
\end{matrix} \right|=0 \\
& \Rightarrow P\equiv \left( x+2 \right)\left( (5)(7)-(4)(7) \right)-\left( y-2 \right)\left( (3)(7)-(7)(1) \right)+\left( z+5 \right)\left( (3)(7)-(1)(7) \right)=0 \\
& \Rightarrow P\equiv \left( x+2 \right)\left( 35-28 \right)-\left( y-2 \right)\left( 21-7 \right)+\left( z+5 \right)\left( 21-14 \right)=0 \\
& \Rightarrow P\equiv \left( x+2 \right)\left( 7 \right)-\left( y-2 \right)\left( 14 \right)+\left( z+5 \right)\left( 7 \right)=0 \\
& \Rightarrow P\equiv 7x+14-14y+28+7z+35=0 \\
& \Rightarrow P\equiv 7x-14y+7z+77=0 \\
& \Rightarrow P\equiv 7\left( x-2y+z+11 \right)=0 \\
& \Rightarrow P\equiv x-2y+z+11=0.....(1) \\
\end{align}\]
From equation (1), it is clear that \[x-2y+z+11=0\] is the equation of plane containing the two lines, \[\dfrac{x+2}{3}=\dfrac{y-2}{5}=\dfrac{z+5}{7}\] and \[\dfrac{x-1}{1}=\dfrac{y-4}{4}=\dfrac{z+4}{7}\].
Now we should find the distance between origin and \[x-2y+z+11=0\].
We know that the distance between origin and \[ax+by+cz+d=0\] is equal to \[\dfrac{\left| d \right|}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}}\].
Now by using this concept, we can find the distance between origin and \[x-2y+z+11=0\].
Let us assume this distance is equal to D.
\[\begin{align}
& \Rightarrow D=\dfrac{\left| 11 \right|}{\sqrt{{{1}^{2}}+{{2}^{2}}+{{1}^{2}}}} \\
& \Rightarrow D=\dfrac{11}{\sqrt{6}}....(2) \\
\end{align}\]
From equation (2), it is clear that the distance between origin and \[x-2y+z+11=0\] is equal to \[\dfrac{11}{\sqrt{6}}\].
Hence, option A is correct.
Note: Students may have a misconception that the distance between origin and \[ax+by+cz+d=0\] is equal to \[\dfrac{\left| d \right|}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}+{{d}^{2}}}}\]. If this misconception is followed, then we cannot get the exact value of D. So, this misconception should be avoided. Otherwise, we cannot get correct answer at any cost.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

