
The perpendicular distance from the origin to the plane containing the two lines, \[\dfrac{x+2}{3}=\dfrac{y-2}{5}=\dfrac{z+5}{7}\] and \[\dfrac{x-1}{1}=\dfrac{y-4}{4}=\dfrac{z+4}{7}\].
\[\begin{align}
& A)\dfrac{11}{\sqrt{6}} \\
& B)6\sqrt{11} \\
& C)\sqrt{11} \\
& D)11\sqrt{6} \\
\end{align}\]
Answer
576k+ views
Hint: We know that the plane containing the two lines, \[\dfrac{x-{{x}_{1}}}{{{a}_{1}}}=\dfrac{y-{{y}_{1}}}{{{b}_{1}}}=\dfrac{z-{{z}_{1}}}{{{c}_{1}}}\] and \[\dfrac{x-{{x}_{2}}}{{{a}_{2}}}=\dfrac{y-{{y}_{2}}}{{{b}_{2}}}=\dfrac{z-{{z}_{2}}}{{{c}_{2}}}\] is \[\left| \begin{matrix}
x-{{x}_{1}} & y-{{y}_{1}} & z-{{z}_{1}} \\
{{a}_{1}} & {{b}_{1}} & {{c}_{1}} \\
{{a}_{2}} & {{b}_{2}} & {{c}_{2}} \\
\end{matrix} \right|=0\]. We know that the distance between origin and \[ax+by+cz+d=0\] is equal to \[\dfrac{\left| d \right|}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}}\]. By using these concepts, we can get the perpendicular distance from the origin to the plane containing the two lines, \[\dfrac{x+2}{3}=\dfrac{y-2}{5}=\dfrac{z+5}{7}\] and \[\dfrac{x-1}{1}=\dfrac{y-4}{4}=\dfrac{z+4}{7}\].
Complete step-by-step solution:
Now we should find the plane containing the two lines, \[\dfrac{x+2}{3}=\dfrac{y-2}{5}=\dfrac{z+5}{7}\] and \[\dfrac{x-1}{1}=\dfrac{y-4}{4}=\dfrac{z+4}{7}\].
We know that the plane containing the two lines, \[\dfrac{x-{{x}_{1}}}{{{a}_{1}}}=\dfrac{y-{{y}_{1}}}{{{b}_{1}}}=\dfrac{z-{{z}_{1}}}{{{c}_{1}}}\] and \[\dfrac{x-{{x}_{2}}}{{{a}_{2}}}=\dfrac{y-{{y}_{2}}}{{{b}_{2}}}=\dfrac{z-{{z}_{2}}}{{{c}_{2}}}\] is \[\left| \begin{matrix}
x-{{x}_{1}} & y-{{y}_{1}} & z-{{z}_{1}} \\
{{a}_{1}} & {{b}_{1}} & {{c}_{1}} \\
{{a}_{2}} & {{b}_{2}} & {{c}_{2}} \\
\end{matrix} \right|=0\].
By using the above concept, we can find the plane containing the two lines, \[\dfrac{x+2}{3}=\dfrac{y-2}{5}=\dfrac{z+5}{7}\] and \[\dfrac{x-1}{1}=\dfrac{y-4}{4}=\dfrac{z+4}{7}\].
Let us assume this plane containing the two lines, \[\dfrac{x+2}{3}=\dfrac{y-2}{5}=\dfrac{z+5}{7}\] and \[\dfrac{x-1}{1}=\dfrac{y-4}{4}=\dfrac{z+4}{7}\] as plane P.
\[\Rightarrow P\equiv \left| \begin{matrix}
x+2 & y-2 & z+5 \\
3 & 5 & 7 \\
1 & 4 & 7 \\
\end{matrix} \right|=0\]
We know that the value of \[\left| \begin{matrix}
a & b & c \\
d & e & f \\
g & h & i \\
\end{matrix} \right|=a\left( ei-hf \right)-b\left( di-fg \right)+c\left( dh-ge \right)\].
Now by using this concept, we should find the equation of plane P.
\[\begin{align}
& \Rightarrow P\equiv \left| \begin{matrix}
x+2 & y-2 & z+5 \\
3 & 5 & 7 \\
1 & 4 & 7 \\
\end{matrix} \right|=0 \\
& \Rightarrow P\equiv \left( x+2 \right)\left( (5)(7)-(4)(7) \right)-\left( y-2 \right)\left( (3)(7)-(7)(1) \right)+\left( z+5 \right)\left( (3)(7)-(1)(7) \right)=0 \\
& \Rightarrow P\equiv \left( x+2 \right)\left( 35-28 \right)-\left( y-2 \right)\left( 21-7 \right)+\left( z+5 \right)\left( 21-14 \right)=0 \\
& \Rightarrow P\equiv \left( x+2 \right)\left( 7 \right)-\left( y-2 \right)\left( 14 \right)+\left( z+5 \right)\left( 7 \right)=0 \\
& \Rightarrow P\equiv 7x+14-14y+28+7z+35=0 \\
& \Rightarrow P\equiv 7x-14y+7z+77=0 \\
& \Rightarrow P\equiv 7\left( x-2y+z+11 \right)=0 \\
& \Rightarrow P\equiv x-2y+z+11=0.....(1) \\
\end{align}\]
From equation (1), it is clear that \[x-2y+z+11=0\] is the equation of plane containing the two lines, \[\dfrac{x+2}{3}=\dfrac{y-2}{5}=\dfrac{z+5}{7}\] and \[\dfrac{x-1}{1}=\dfrac{y-4}{4}=\dfrac{z+4}{7}\].
Now we should find the distance between origin and \[x-2y+z+11=0\].
We know that the distance between origin and \[ax+by+cz+d=0\] is equal to \[\dfrac{\left| d \right|}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}}\].
Now by using this concept, we can find the distance between origin and \[x-2y+z+11=0\].
Let us assume this distance is equal to D.
\[\begin{align}
& \Rightarrow D=\dfrac{\left| 11 \right|}{\sqrt{{{1}^{2}}+{{2}^{2}}+{{1}^{2}}}} \\
& \Rightarrow D=\dfrac{11}{\sqrt{6}}....(2) \\
\end{align}\]
From equation (2), it is clear that the distance between origin and \[x-2y+z+11=0\] is equal to \[\dfrac{11}{\sqrt{6}}\].
Hence, option A is correct.
Note: Students may have a misconception that the distance between origin and \[ax+by+cz+d=0\] is equal to \[\dfrac{\left| d \right|}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}+{{d}^{2}}}}\]. If this misconception is followed, then we cannot get the exact value of D. So, this misconception should be avoided. Otherwise, we cannot get correct answer at any cost.
x-{{x}_{1}} & y-{{y}_{1}} & z-{{z}_{1}} \\
{{a}_{1}} & {{b}_{1}} & {{c}_{1}} \\
{{a}_{2}} & {{b}_{2}} & {{c}_{2}} \\
\end{matrix} \right|=0\]. We know that the distance between origin and \[ax+by+cz+d=0\] is equal to \[\dfrac{\left| d \right|}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}}\]. By using these concepts, we can get the perpendicular distance from the origin to the plane containing the two lines, \[\dfrac{x+2}{3}=\dfrac{y-2}{5}=\dfrac{z+5}{7}\] and \[\dfrac{x-1}{1}=\dfrac{y-4}{4}=\dfrac{z+4}{7}\].
Complete step-by-step solution:
Now we should find the plane containing the two lines, \[\dfrac{x+2}{3}=\dfrac{y-2}{5}=\dfrac{z+5}{7}\] and \[\dfrac{x-1}{1}=\dfrac{y-4}{4}=\dfrac{z+4}{7}\].
We know that the plane containing the two lines, \[\dfrac{x-{{x}_{1}}}{{{a}_{1}}}=\dfrac{y-{{y}_{1}}}{{{b}_{1}}}=\dfrac{z-{{z}_{1}}}{{{c}_{1}}}\] and \[\dfrac{x-{{x}_{2}}}{{{a}_{2}}}=\dfrac{y-{{y}_{2}}}{{{b}_{2}}}=\dfrac{z-{{z}_{2}}}{{{c}_{2}}}\] is \[\left| \begin{matrix}
x-{{x}_{1}} & y-{{y}_{1}} & z-{{z}_{1}} \\
{{a}_{1}} & {{b}_{1}} & {{c}_{1}} \\
{{a}_{2}} & {{b}_{2}} & {{c}_{2}} \\
\end{matrix} \right|=0\].
By using the above concept, we can find the plane containing the two lines, \[\dfrac{x+2}{3}=\dfrac{y-2}{5}=\dfrac{z+5}{7}\] and \[\dfrac{x-1}{1}=\dfrac{y-4}{4}=\dfrac{z+4}{7}\].
Let us assume this plane containing the two lines, \[\dfrac{x+2}{3}=\dfrac{y-2}{5}=\dfrac{z+5}{7}\] and \[\dfrac{x-1}{1}=\dfrac{y-4}{4}=\dfrac{z+4}{7}\] as plane P.
\[\Rightarrow P\equiv \left| \begin{matrix}
x+2 & y-2 & z+5 \\
3 & 5 & 7 \\
1 & 4 & 7 \\
\end{matrix} \right|=0\]
We know that the value of \[\left| \begin{matrix}
a & b & c \\
d & e & f \\
g & h & i \\
\end{matrix} \right|=a\left( ei-hf \right)-b\left( di-fg \right)+c\left( dh-ge \right)\].
Now by using this concept, we should find the equation of plane P.
\[\begin{align}
& \Rightarrow P\equiv \left| \begin{matrix}
x+2 & y-2 & z+5 \\
3 & 5 & 7 \\
1 & 4 & 7 \\
\end{matrix} \right|=0 \\
& \Rightarrow P\equiv \left( x+2 \right)\left( (5)(7)-(4)(7) \right)-\left( y-2 \right)\left( (3)(7)-(7)(1) \right)+\left( z+5 \right)\left( (3)(7)-(1)(7) \right)=0 \\
& \Rightarrow P\equiv \left( x+2 \right)\left( 35-28 \right)-\left( y-2 \right)\left( 21-7 \right)+\left( z+5 \right)\left( 21-14 \right)=0 \\
& \Rightarrow P\equiv \left( x+2 \right)\left( 7 \right)-\left( y-2 \right)\left( 14 \right)+\left( z+5 \right)\left( 7 \right)=0 \\
& \Rightarrow P\equiv 7x+14-14y+28+7z+35=0 \\
& \Rightarrow P\equiv 7x-14y+7z+77=0 \\
& \Rightarrow P\equiv 7\left( x-2y+z+11 \right)=0 \\
& \Rightarrow P\equiv x-2y+z+11=0.....(1) \\
\end{align}\]
From equation (1), it is clear that \[x-2y+z+11=0\] is the equation of plane containing the two lines, \[\dfrac{x+2}{3}=\dfrac{y-2}{5}=\dfrac{z+5}{7}\] and \[\dfrac{x-1}{1}=\dfrac{y-4}{4}=\dfrac{z+4}{7}\].
Now we should find the distance between origin and \[x-2y+z+11=0\].
We know that the distance between origin and \[ax+by+cz+d=0\] is equal to \[\dfrac{\left| d \right|}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}}\].
Now by using this concept, we can find the distance between origin and \[x-2y+z+11=0\].
Let us assume this distance is equal to D.
\[\begin{align}
& \Rightarrow D=\dfrac{\left| 11 \right|}{\sqrt{{{1}^{2}}+{{2}^{2}}+{{1}^{2}}}} \\
& \Rightarrow D=\dfrac{11}{\sqrt{6}}....(2) \\
\end{align}\]
From equation (2), it is clear that the distance between origin and \[x-2y+z+11=0\] is equal to \[\dfrac{11}{\sqrt{6}}\].
Hence, option A is correct.
Note: Students may have a misconception that the distance between origin and \[ax+by+cz+d=0\] is equal to \[\dfrac{\left| d \right|}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}+{{d}^{2}}}}\]. If this misconception is followed, then we cannot get the exact value of D. So, this misconception should be avoided. Otherwise, we cannot get correct answer at any cost.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

