
The perpendicular distance from the origin to the plane containing the two lines, \[\dfrac{x+2}{3}=\dfrac{y-2}{5}=\dfrac{z+5}{7}\] and \[\dfrac{x-1}{1}=\dfrac{y-4}{4}=\dfrac{z+4}{7}\].
\[\begin{align}
& A)\dfrac{11}{\sqrt{6}} \\
& B)6\sqrt{11} \\
& C)\sqrt{11} \\
& D)11\sqrt{6} \\
\end{align}\]
Answer
511.5k+ views
Hint: We know that the plane containing the two lines, \[\dfrac{x-{{x}_{1}}}{{{a}_{1}}}=\dfrac{y-{{y}_{1}}}{{{b}_{1}}}=\dfrac{z-{{z}_{1}}}{{{c}_{1}}}\] and \[\dfrac{x-{{x}_{2}}}{{{a}_{2}}}=\dfrac{y-{{y}_{2}}}{{{b}_{2}}}=\dfrac{z-{{z}_{2}}}{{{c}_{2}}}\] is \[\left| \begin{matrix}
x-{{x}_{1}} & y-{{y}_{1}} & z-{{z}_{1}} \\
{{a}_{1}} & {{b}_{1}} & {{c}_{1}} \\
{{a}_{2}} & {{b}_{2}} & {{c}_{2}} \\
\end{matrix} \right|=0\]. We know that the distance between origin and \[ax+by+cz+d=0\] is equal to \[\dfrac{\left| d \right|}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}}\]. By using these concepts, we can get the perpendicular distance from the origin to the plane containing the two lines, \[\dfrac{x+2}{3}=\dfrac{y-2}{5}=\dfrac{z+5}{7}\] and \[\dfrac{x-1}{1}=\dfrac{y-4}{4}=\dfrac{z+4}{7}\].
Complete step-by-step solution:
Now we should find the plane containing the two lines, \[\dfrac{x+2}{3}=\dfrac{y-2}{5}=\dfrac{z+5}{7}\] and \[\dfrac{x-1}{1}=\dfrac{y-4}{4}=\dfrac{z+4}{7}\].
We know that the plane containing the two lines, \[\dfrac{x-{{x}_{1}}}{{{a}_{1}}}=\dfrac{y-{{y}_{1}}}{{{b}_{1}}}=\dfrac{z-{{z}_{1}}}{{{c}_{1}}}\] and \[\dfrac{x-{{x}_{2}}}{{{a}_{2}}}=\dfrac{y-{{y}_{2}}}{{{b}_{2}}}=\dfrac{z-{{z}_{2}}}{{{c}_{2}}}\] is \[\left| \begin{matrix}
x-{{x}_{1}} & y-{{y}_{1}} & z-{{z}_{1}} \\
{{a}_{1}} & {{b}_{1}} & {{c}_{1}} \\
{{a}_{2}} & {{b}_{2}} & {{c}_{2}} \\
\end{matrix} \right|=0\].
By using the above concept, we can find the plane containing the two lines, \[\dfrac{x+2}{3}=\dfrac{y-2}{5}=\dfrac{z+5}{7}\] and \[\dfrac{x-1}{1}=\dfrac{y-4}{4}=\dfrac{z+4}{7}\].
Let us assume this plane containing the two lines, \[\dfrac{x+2}{3}=\dfrac{y-2}{5}=\dfrac{z+5}{7}\] and \[\dfrac{x-1}{1}=\dfrac{y-4}{4}=\dfrac{z+4}{7}\] as plane P.
\[\Rightarrow P\equiv \left| \begin{matrix}
x+2 & y-2 & z+5 \\
3 & 5 & 7 \\
1 & 4 & 7 \\
\end{matrix} \right|=0\]
We know that the value of \[\left| \begin{matrix}
a & b & c \\
d & e & f \\
g & h & i \\
\end{matrix} \right|=a\left( ei-hf \right)-b\left( di-fg \right)+c\left( dh-ge \right)\].
Now by using this concept, we should find the equation of plane P.
\[\begin{align}
& \Rightarrow P\equiv \left| \begin{matrix}
x+2 & y-2 & z+5 \\
3 & 5 & 7 \\
1 & 4 & 7 \\
\end{matrix} \right|=0 \\
& \Rightarrow P\equiv \left( x+2 \right)\left( (5)(7)-(4)(7) \right)-\left( y-2 \right)\left( (3)(7)-(7)(1) \right)+\left( z+5 \right)\left( (3)(7)-(1)(7) \right)=0 \\
& \Rightarrow P\equiv \left( x+2 \right)\left( 35-28 \right)-\left( y-2 \right)\left( 21-7 \right)+\left( z+5 \right)\left( 21-14 \right)=0 \\
& \Rightarrow P\equiv \left( x+2 \right)\left( 7 \right)-\left( y-2 \right)\left( 14 \right)+\left( z+5 \right)\left( 7 \right)=0 \\
& \Rightarrow P\equiv 7x+14-14y+28+7z+35=0 \\
& \Rightarrow P\equiv 7x-14y+7z+77=0 \\
& \Rightarrow P\equiv 7\left( x-2y+z+11 \right)=0 \\
& \Rightarrow P\equiv x-2y+z+11=0.....(1) \\
\end{align}\]
From equation (1), it is clear that \[x-2y+z+11=0\] is the equation of plane containing the two lines, \[\dfrac{x+2}{3}=\dfrac{y-2}{5}=\dfrac{z+5}{7}\] and \[\dfrac{x-1}{1}=\dfrac{y-4}{4}=\dfrac{z+4}{7}\].
Now we should find the distance between origin and \[x-2y+z+11=0\].
We know that the distance between origin and \[ax+by+cz+d=0\] is equal to \[\dfrac{\left| d \right|}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}}\].
Now by using this concept, we can find the distance between origin and \[x-2y+z+11=0\].
Let us assume this distance is equal to D.
\[\begin{align}
& \Rightarrow D=\dfrac{\left| 11 \right|}{\sqrt{{{1}^{2}}+{{2}^{2}}+{{1}^{2}}}} \\
& \Rightarrow D=\dfrac{11}{\sqrt{6}}....(2) \\
\end{align}\]
From equation (2), it is clear that the distance between origin and \[x-2y+z+11=0\] is equal to \[\dfrac{11}{\sqrt{6}}\].
Hence, option A is correct.
Note: Students may have a misconception that the distance between origin and \[ax+by+cz+d=0\] is equal to \[\dfrac{\left| d \right|}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}+{{d}^{2}}}}\]. If this misconception is followed, then we cannot get the exact value of D. So, this misconception should be avoided. Otherwise, we cannot get correct answer at any cost.
x-{{x}_{1}} & y-{{y}_{1}} & z-{{z}_{1}} \\
{{a}_{1}} & {{b}_{1}} & {{c}_{1}} \\
{{a}_{2}} & {{b}_{2}} & {{c}_{2}} \\
\end{matrix} \right|=0\]. We know that the distance between origin and \[ax+by+cz+d=0\] is equal to \[\dfrac{\left| d \right|}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}}\]. By using these concepts, we can get the perpendicular distance from the origin to the plane containing the two lines, \[\dfrac{x+2}{3}=\dfrac{y-2}{5}=\dfrac{z+5}{7}\] and \[\dfrac{x-1}{1}=\dfrac{y-4}{4}=\dfrac{z+4}{7}\].
Complete step-by-step solution:
Now we should find the plane containing the two lines, \[\dfrac{x+2}{3}=\dfrac{y-2}{5}=\dfrac{z+5}{7}\] and \[\dfrac{x-1}{1}=\dfrac{y-4}{4}=\dfrac{z+4}{7}\].
We know that the plane containing the two lines, \[\dfrac{x-{{x}_{1}}}{{{a}_{1}}}=\dfrac{y-{{y}_{1}}}{{{b}_{1}}}=\dfrac{z-{{z}_{1}}}{{{c}_{1}}}\] and \[\dfrac{x-{{x}_{2}}}{{{a}_{2}}}=\dfrac{y-{{y}_{2}}}{{{b}_{2}}}=\dfrac{z-{{z}_{2}}}{{{c}_{2}}}\] is \[\left| \begin{matrix}
x-{{x}_{1}} & y-{{y}_{1}} & z-{{z}_{1}} \\
{{a}_{1}} & {{b}_{1}} & {{c}_{1}} \\
{{a}_{2}} & {{b}_{2}} & {{c}_{2}} \\
\end{matrix} \right|=0\].
By using the above concept, we can find the plane containing the two lines, \[\dfrac{x+2}{3}=\dfrac{y-2}{5}=\dfrac{z+5}{7}\] and \[\dfrac{x-1}{1}=\dfrac{y-4}{4}=\dfrac{z+4}{7}\].
Let us assume this plane containing the two lines, \[\dfrac{x+2}{3}=\dfrac{y-2}{5}=\dfrac{z+5}{7}\] and \[\dfrac{x-1}{1}=\dfrac{y-4}{4}=\dfrac{z+4}{7}\] as plane P.
\[\Rightarrow P\equiv \left| \begin{matrix}
x+2 & y-2 & z+5 \\
3 & 5 & 7 \\
1 & 4 & 7 \\
\end{matrix} \right|=0\]
We know that the value of \[\left| \begin{matrix}
a & b & c \\
d & e & f \\
g & h & i \\
\end{matrix} \right|=a\left( ei-hf \right)-b\left( di-fg \right)+c\left( dh-ge \right)\].
Now by using this concept, we should find the equation of plane P.
\[\begin{align}
& \Rightarrow P\equiv \left| \begin{matrix}
x+2 & y-2 & z+5 \\
3 & 5 & 7 \\
1 & 4 & 7 \\
\end{matrix} \right|=0 \\
& \Rightarrow P\equiv \left( x+2 \right)\left( (5)(7)-(4)(7) \right)-\left( y-2 \right)\left( (3)(7)-(7)(1) \right)+\left( z+5 \right)\left( (3)(7)-(1)(7) \right)=0 \\
& \Rightarrow P\equiv \left( x+2 \right)\left( 35-28 \right)-\left( y-2 \right)\left( 21-7 \right)+\left( z+5 \right)\left( 21-14 \right)=0 \\
& \Rightarrow P\equiv \left( x+2 \right)\left( 7 \right)-\left( y-2 \right)\left( 14 \right)+\left( z+5 \right)\left( 7 \right)=0 \\
& \Rightarrow P\equiv 7x+14-14y+28+7z+35=0 \\
& \Rightarrow P\equiv 7x-14y+7z+77=0 \\
& \Rightarrow P\equiv 7\left( x-2y+z+11 \right)=0 \\
& \Rightarrow P\equiv x-2y+z+11=0.....(1) \\
\end{align}\]
From equation (1), it is clear that \[x-2y+z+11=0\] is the equation of plane containing the two lines, \[\dfrac{x+2}{3}=\dfrac{y-2}{5}=\dfrac{z+5}{7}\] and \[\dfrac{x-1}{1}=\dfrac{y-4}{4}=\dfrac{z+4}{7}\].
Now we should find the distance between origin and \[x-2y+z+11=0\].
We know that the distance between origin and \[ax+by+cz+d=0\] is equal to \[\dfrac{\left| d \right|}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}}\].
Now by using this concept, we can find the distance between origin and \[x-2y+z+11=0\].
Let us assume this distance is equal to D.
\[\begin{align}
& \Rightarrow D=\dfrac{\left| 11 \right|}{\sqrt{{{1}^{2}}+{{2}^{2}}+{{1}^{2}}}} \\
& \Rightarrow D=\dfrac{11}{\sqrt{6}}....(2) \\
\end{align}\]
From equation (2), it is clear that the distance between origin and \[x-2y+z+11=0\] is equal to \[\dfrac{11}{\sqrt{6}}\].
Hence, option A is correct.
Note: Students may have a misconception that the distance between origin and \[ax+by+cz+d=0\] is equal to \[\dfrac{\left| d \right|}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}+{{d}^{2}}}}\]. If this misconception is followed, then we cannot get the exact value of D. So, this misconception should be avoided. Otherwise, we cannot get correct answer at any cost.
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

An example of ex situ conservation is a Sacred grove class 12 biology CBSE

Why is insulin not administered orally to a diabetic class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

The total number of isomers considering both the structural class 12 chemistry CBSE
