Answer
Verified
444.9k+ views
Hint: The time period of a simple pendulum is the time taken by a pendulum to complete one full oscillation. The maximum displacement of the bob in the pendulum is the amplitude of that pendulum.
Formula used:
Time period of a simple pendulum,
$T=2\pi \sqrt{\dfrac{l}{g}}$ .
Complete step by step answer:
In the question we are given the length of the pendulum,$l$ = 1 m
Amplitude of the pendulum, A = 2cm
And the time period of this pendulum, T = 5 seconds.
We have to find the time period of this pendulum, when its amplitude becomes 4 cm.
We know, time period of a simple pendulum is given by the equation,
$T=2\pi \sqrt{\dfrac{l}{g}}$ , where ‘$l$’ is the length of the pendulum and ‘g’ is acceleration due to gravity.
From this equation, it is clear that the time period of a simple pendulum does not depend on its amplitude.
In the question, we change the amplitude of the pendulum from 2 cm to 4 cm. Length of the pendulum remains the same and acceleration due to gravity; ‘g’ is a constant.
Therefore, the time period of the pendulum when its amplitude = 4cm, length ‘$l$’=1 m will be 5 seconds.
So, the correct answer is “Option B”.
Note:
Time period of simple pendulum
For a simple pendulum, we know its angular frequency $\omega $ is given by
$\omega =\sqrt{\dfrac{g}{l}}$ , where ‘$l$’ is the length of the pendulum and ‘g’ is acceleration due to gravity.
Time period of an oscillation is generally expressed as,
$T=\dfrac{2\pi }{\omega }$ , where ‘T’ is the time period and ‘$\omega $’ is the angular frequency of the pendulum.
By substituting the value of angular frequency (ω) in the above equation, we get
$T=2\pi \sqrt{\dfrac{l}{g}}$
Therefore the time period of a pendulum is, $T=2\pi \sqrt{\dfrac{l}{g}}$
Formula used:
Time period of a simple pendulum,
$T=2\pi \sqrt{\dfrac{l}{g}}$ .
Complete step by step answer:
In the question we are given the length of the pendulum,$l$ = 1 m
Amplitude of the pendulum, A = 2cm
And the time period of this pendulum, T = 5 seconds.
We have to find the time period of this pendulum, when its amplitude becomes 4 cm.
We know, time period of a simple pendulum is given by the equation,
$T=2\pi \sqrt{\dfrac{l}{g}}$ , where ‘$l$’ is the length of the pendulum and ‘g’ is acceleration due to gravity.
From this equation, it is clear that the time period of a simple pendulum does not depend on its amplitude.
In the question, we change the amplitude of the pendulum from 2 cm to 4 cm. Length of the pendulum remains the same and acceleration due to gravity; ‘g’ is a constant.
Therefore, the time period of the pendulum when its amplitude = 4cm, length ‘$l$’=1 m will be 5 seconds.
So, the correct answer is “Option B”.
Note:
Time period of simple pendulum
For a simple pendulum, we know its angular frequency $\omega $ is given by
$\omega =\sqrt{\dfrac{g}{l}}$ , where ‘$l$’ is the length of the pendulum and ‘g’ is acceleration due to gravity.
Time period of an oscillation is generally expressed as,
$T=\dfrac{2\pi }{\omega }$ , where ‘T’ is the time period and ‘$\omega $’ is the angular frequency of the pendulum.
By substituting the value of angular frequency (ω) in the above equation, we get
$T=2\pi \sqrt{\dfrac{l}{g}}$
Therefore the time period of a pendulum is, $T=2\pi \sqrt{\dfrac{l}{g}}$
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
At which age domestication of animals started A Neolithic class 11 social science CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Summary of the poem Where the Mind is Without Fear class 8 english CBSE
One cusec is equal to how many liters class 8 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE