Answer
Verified
454.2k+ views
Hint: In this question we have two unknowns, the original price of the painting and the $X$. Therefore, we need at least two equations to find out the exact value of these two unknowns. We will be obtaining these equations from the conditions and data given to us in the question.
Complete step-by-step answer:
Let us assume that the original price of the painting is $P$rupees.
Now, the owner increased the price by $X\% $. Therefore, the new price will be
$
\Rightarrow price\;1 = P + \left( {X\% \;of\;P} \right) \\
\Rightarrow price\;1 = P + \left( {\dfrac{X}{{100}} \times P} \right) \\
\Rightarrow price\;1 = \left( {\dfrac{{100 + X}}{{100}}} \right)P \\
$
At this point of time, the owner reduced the price by $X\% $. Therefore, the new price of the painting will be
$
\Rightarrow price\;2 = price\;1 - \left( {X\% \;of\;price\;1} \right) \\
\Rightarrow price\;2 = \left( {\dfrac{{100 - X}}{{100}}} \right)(price\;1) \\
$
Now substituting the value of $price\;1$in it, we will get
$ \Rightarrow price\;2 = \left( {\dfrac{{100 - X}}{{100}}} \right)\left( {\dfrac{{100 + X}}{{100}}} \right)P$
Now the owner again raised the price by $X\% $. Therefore the new price will be
$
\Rightarrow price\;3 = price\;2 + \left( {X\% \;of\;price\;2} \right) \\
\Rightarrow price\;3 = \left( {\dfrac{{100 + X}}{{100}}} \right)(price\;2) \\
$
Now substituting the value of $price\;2$ in it, we get
$ \Rightarrow price\;3 = \left( {\dfrac{{100 + X}}{{100}}} \right)\left( {\dfrac{{100 - X}}{{100}}} \right)\left( {\dfrac{{100 + X}}{{100}}} \right)P$
At last, the owner decreased the price by $X\% $. Therefore, the final price is
$
\Rightarrow price\;4 = price\;3 - \left( {X\% \;of\;price\;3} \right) \\
\Rightarrow price\;4 = \left( {\dfrac{{100 - X}}{{100}}} \right)(price\;3) \\
$
Now substituting the value of $price\;3$in it , we get
$ \Rightarrow price\;4 = \left( {\dfrac{{100 - X}}{{100}}} \right)\left( {\dfrac{{100 + X}}{{100}}} \right)\left( {\dfrac{{100 - X}}{{100}}} \right)\left( {\dfrac{{100 + X}}{{100}}} \right)P$
In the question , we are told that
$ \Rightarrow P - price\;2 = 441$ and $Final\;price = price\;4 = 1944.811$
Using the above information, we will form the final two required equations.
Part $1$:
$ \Rightarrow P - price\;2 = 441$
Substituting value from above available data, we get
$
\Rightarrow P - price\;2 = 441 \\
\Rightarrow P - \left( {\dfrac{{100 - X}}{{100}}} \right)\left( {\dfrac{{100 + X}}{{100}}} \right)P = 441 \\
$
Which on simplifying gives us
$ \Rightarrow P = {\left( {\dfrac{{2100}}{X}} \right)^2}$
Part $2$:
\[
\Rightarrow price\;4 = 1944.811 \\
\Rightarrow price\;4 = \left( {\dfrac{{100 - X}}{{100}}} \right)\left( {\dfrac{{100 + X}}{{100}}} \right)\left( {\dfrac{{100 - X}}{{100}}} \right)\left( {\dfrac{{100 + X}}{{100}}} \right)P = 1944.811 \\
\]
Which on simplifying gives us
$ \Rightarrow {\left( {\dfrac{{{{10}^4} - {X^2}}}{{{{10}^4}}}} \right)^2}P = 1944.811$
Now, at last we have two very simplified equations from part $1$ and part $2$. Since, we are only interested in finding the painting price $P$. Therefore, we will substitute value of ${X^2}$ from part $1$ to part $2$
$
\Rightarrow {\left( {\dfrac{{{{10}^4} - {X^2}}}{{{{10}^4}}}} \right)^2}P = 1944.811 \\
\Rightarrow {\left( {\dfrac{{{{10}^4} - \left( {\dfrac{{441 \times {{10}^4}}}{P}} \right)}}{{{{10}^4}}}} \right)^2}P = 1944.811 \\
$
Which on further simplifying becomes
$ \Rightarrow {P^2} - 2826.811P + 194481 = 0$
On solving this quadratic equation, we get
$P = 70.55$ or $P = 2756.25$
Hence, the correct answer is $\left( A \right)\;P = 2756.25$
Note: We must take care which unknown variable we need to eliminate. If, we have eliminated $P$ instead of $X$, then the question would have further calculations like substituting the calculated value of $X$to find the Value of $P$.
Complete step-by-step answer:
Let us assume that the original price of the painting is $P$rupees.
Now, the owner increased the price by $X\% $. Therefore, the new price will be
$
\Rightarrow price\;1 = P + \left( {X\% \;of\;P} \right) \\
\Rightarrow price\;1 = P + \left( {\dfrac{X}{{100}} \times P} \right) \\
\Rightarrow price\;1 = \left( {\dfrac{{100 + X}}{{100}}} \right)P \\
$
At this point of time, the owner reduced the price by $X\% $. Therefore, the new price of the painting will be
$
\Rightarrow price\;2 = price\;1 - \left( {X\% \;of\;price\;1} \right) \\
\Rightarrow price\;2 = \left( {\dfrac{{100 - X}}{{100}}} \right)(price\;1) \\
$
Now substituting the value of $price\;1$in it, we will get
$ \Rightarrow price\;2 = \left( {\dfrac{{100 - X}}{{100}}} \right)\left( {\dfrac{{100 + X}}{{100}}} \right)P$
Now the owner again raised the price by $X\% $. Therefore the new price will be
$
\Rightarrow price\;3 = price\;2 + \left( {X\% \;of\;price\;2} \right) \\
\Rightarrow price\;3 = \left( {\dfrac{{100 + X}}{{100}}} \right)(price\;2) \\
$
Now substituting the value of $price\;2$ in it, we get
$ \Rightarrow price\;3 = \left( {\dfrac{{100 + X}}{{100}}} \right)\left( {\dfrac{{100 - X}}{{100}}} \right)\left( {\dfrac{{100 + X}}{{100}}} \right)P$
At last, the owner decreased the price by $X\% $. Therefore, the final price is
$
\Rightarrow price\;4 = price\;3 - \left( {X\% \;of\;price\;3} \right) \\
\Rightarrow price\;4 = \left( {\dfrac{{100 - X}}{{100}}} \right)(price\;3) \\
$
Now substituting the value of $price\;3$in it , we get
$ \Rightarrow price\;4 = \left( {\dfrac{{100 - X}}{{100}}} \right)\left( {\dfrac{{100 + X}}{{100}}} \right)\left( {\dfrac{{100 - X}}{{100}}} \right)\left( {\dfrac{{100 + X}}{{100}}} \right)P$
In the question , we are told that
$ \Rightarrow P - price\;2 = 441$ and $Final\;price = price\;4 = 1944.811$
Using the above information, we will form the final two required equations.
Part $1$:
$ \Rightarrow P - price\;2 = 441$
Substituting value from above available data, we get
$
\Rightarrow P - price\;2 = 441 \\
\Rightarrow P - \left( {\dfrac{{100 - X}}{{100}}} \right)\left( {\dfrac{{100 + X}}{{100}}} \right)P = 441 \\
$
Which on simplifying gives us
$ \Rightarrow P = {\left( {\dfrac{{2100}}{X}} \right)^2}$
Part $2$:
\[
\Rightarrow price\;4 = 1944.811 \\
\Rightarrow price\;4 = \left( {\dfrac{{100 - X}}{{100}}} \right)\left( {\dfrac{{100 + X}}{{100}}} \right)\left( {\dfrac{{100 - X}}{{100}}} \right)\left( {\dfrac{{100 + X}}{{100}}} \right)P = 1944.811 \\
\]
Which on simplifying gives us
$ \Rightarrow {\left( {\dfrac{{{{10}^4} - {X^2}}}{{{{10}^4}}}} \right)^2}P = 1944.811$
Now, at last we have two very simplified equations from part $1$ and part $2$. Since, we are only interested in finding the painting price $P$. Therefore, we will substitute value of ${X^2}$ from part $1$ to part $2$
$
\Rightarrow {\left( {\dfrac{{{{10}^4} - {X^2}}}{{{{10}^4}}}} \right)^2}P = 1944.811 \\
\Rightarrow {\left( {\dfrac{{{{10}^4} - \left( {\dfrac{{441 \times {{10}^4}}}{P}} \right)}}{{{{10}^4}}}} \right)^2}P = 1944.811 \\
$
Which on further simplifying becomes
$ \Rightarrow {P^2} - 2826.811P + 194481 = 0$
On solving this quadratic equation, we get
$P = 70.55$ or $P = 2756.25$
Hence, the correct answer is $\left( A \right)\;P = 2756.25$
Note: We must take care which unknown variable we need to eliminate. If, we have eliminated $P$ instead of $X$, then the question would have further calculations like substituting the calculated value of $X$to find the Value of $P$.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Sound waves travel faster in air than in water True class 12 physics CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE