
The number of ways in which we can arrange n ladies and n gentlemen at a round table so that 2 ladies and 2 gentlemen may not sit next to one another is:
\[
a.{\text{ }}\left( {n - 1} \right)!\left( {n - 2} \right)! \\
b.{\text{ }}\left( {{\text{n!}}} \right)\left( {n - 1} \right)! \\
c.{\text{ }}\left( {n + 1} \right)!\left( {n!} \right) \\
d.{\text{ None of these}} \\
\]
Answer
608.7k+ views
Hint: - Number of ways to sit n persons on a round table is $ = \left( {n - 1} \right)!$
First we have to arrange n gentlemen around the round table so, number of ways to do so
$ = \left( {n - 1} \right)!$
Now, when these men are arranged and seated than there are n spaces between each man where we will arrange and seated n ladies so that two ladies and two gentlemen may not sit each other$ = {}^n{C_n}\left( {n!} \right)\left( {n - n} \right)! = {}^n{C_n}\left( {n!} \right)\left( {0!} \right)$
As we know the value of ${}^n{C_n} = n,{\text{ }}0! = 1$
$ \Rightarrow {}^n{C_n}\left( {n!} \right)\left( {0!} \right) = 1 \times n! \times 1 = n!$
Hence, total number of ways of sitting so that two ladies and two gentlemen may not sit each other
$ = \left( {n - 1} \right)!\left( {n!} \right)$
Hence, option (b) is correct.
Note: - Whenever we face such types of problems first calculate the number of ways to sit $n$gentlemen on a round table, then calculate the number of ways to sit $n$ ladies between them, then multiply these two values we will get the required answer.
First we have to arrange n gentlemen around the round table so, number of ways to do so
$ = \left( {n - 1} \right)!$
Now, when these men are arranged and seated than there are n spaces between each man where we will arrange and seated n ladies so that two ladies and two gentlemen may not sit each other$ = {}^n{C_n}\left( {n!} \right)\left( {n - n} \right)! = {}^n{C_n}\left( {n!} \right)\left( {0!} \right)$
As we know the value of ${}^n{C_n} = n,{\text{ }}0! = 1$
$ \Rightarrow {}^n{C_n}\left( {n!} \right)\left( {0!} \right) = 1 \times n! \times 1 = n!$
Hence, total number of ways of sitting so that two ladies and two gentlemen may not sit each other
$ = \left( {n - 1} \right)!\left( {n!} \right)$
Hence, option (b) is correct.
Note: - Whenever we face such types of problems first calculate the number of ways to sit $n$gentlemen on a round table, then calculate the number of ways to sit $n$ ladies between them, then multiply these two values we will get the required answer.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

