
The number of solutions of the equation is $\sin x = \cos 3x$ in $\left[ {0,\pi } \right]$ is
A) 1
B) 2
C) 3
D) 4
Answer
578.4k+ views
Hint: For solving trigonometric equations, use both the reference angles and trigonometric identities.
As a general description, there are 3 steps. These steps may be very challenging, depending on the equation.
Step 1: Find the trigonometric values needed to solve the equation.
Step 2: Find all 'angles' that give us these values from step 1.
Step 3: Find the values of the unknown that will result in angles that we got in step 2.
Formula used:
\[
1{\text{ }} + {\text{ ta}}{{\text{n}}^{\;2}}x{\text{ }} = {\text{ se}}{{\text{c}}^{\;2}}x \\
cos3x = 4co{s^3}3x - 3cosx \\
\]
Complete step-by-step answer:
Just as with linear equations, we must first isolate the variable-containing term:
The given equation using trigonometry identity can be written as:-
\[
sinx = 4co{s^3}x - 3cosx \\
\Rightarrow \sin x = \dfrac{4}{{{{\sec }^3}x}} - \dfrac{3}{{\sec x}} \\
\Rightarrow \dfrac{{\sin xse{c^2}x}}{{\cos x}} = 4 - 3{\sec ^2}x \\
\Rightarrow se{c^2}xtanx + 3se{c^2}x - 4 = 0 \\
\Rightarrow se{c^2}x(tanx + 3) - 4 = 0 \\
\]
In terms of tan x, this leads to the equation
\[
\Rightarrow se{c^2}x(tanx + 3) - 4 = 0 \\
\Rightarrow (1 + {\tan ^2}x)(tanx + 3) - 4 = 0 \\
\Rightarrow \tan x + 3 + {\tan ^3}x + 3{\tan ^2}x - 4 = 0 \\
\]
Let us factorise the left hand side of the equation using simple factorisation and then we have to solve for each of the factors.
\[
\Rightarrow \tan x + {\tan ^3}x + 3{\tan ^2}x + \tan x - 1 = 0 \\
\Rightarrow (\tan x + 1)(\tan 2x + 2\tan x - 1) = 0 \\
\]
After the factorisation, we are left with two trigonometric equations. Now let us further simplify those trigonometric equations separately and find the possible values for the equations.
\[
\Rightarrow \tan x = - 1\;or\;\tan 2x = 1 \\
\Rightarrow x = \dfrac{{3\pi }}{4},\dfrac{\pi }{8},\dfrac{{5\pi }}{8} \\
\]
So, option (C) is the correct answer.
Note: 1. If tan θ or sec θ is involved in the equation then θ ≠ odd multiple of π/2.
2. If cot θ or cosec θ is involved in the equation then θ ≠ multiple of π or 0.
Trigonometry is full of formulas and the students are advised to learn all the trigonometric formulas including the trigonometry basics so as to remain prepared for examination. Students must practice various trigonometry problems based on trigonometric ratios and trigonometry basics so as to get acquainted with the topic.
As a general description, there are 3 steps. These steps may be very challenging, depending on the equation.
Step 1: Find the trigonometric values needed to solve the equation.
Step 2: Find all 'angles' that give us these values from step 1.
Step 3: Find the values of the unknown that will result in angles that we got in step 2.
Formula used:
\[
1{\text{ }} + {\text{ ta}}{{\text{n}}^{\;2}}x{\text{ }} = {\text{ se}}{{\text{c}}^{\;2}}x \\
cos3x = 4co{s^3}3x - 3cosx \\
\]
Complete step-by-step answer:
Just as with linear equations, we must first isolate the variable-containing term:
The given equation using trigonometry identity can be written as:-
\[
sinx = 4co{s^3}x - 3cosx \\
\Rightarrow \sin x = \dfrac{4}{{{{\sec }^3}x}} - \dfrac{3}{{\sec x}} \\
\Rightarrow \dfrac{{\sin xse{c^2}x}}{{\cos x}} = 4 - 3{\sec ^2}x \\
\Rightarrow se{c^2}xtanx + 3se{c^2}x - 4 = 0 \\
\Rightarrow se{c^2}x(tanx + 3) - 4 = 0 \\
\]
In terms of tan x, this leads to the equation
\[
\Rightarrow se{c^2}x(tanx + 3) - 4 = 0 \\
\Rightarrow (1 + {\tan ^2}x)(tanx + 3) - 4 = 0 \\
\Rightarrow \tan x + 3 + {\tan ^3}x + 3{\tan ^2}x - 4 = 0 \\
\]
Let us factorise the left hand side of the equation using simple factorisation and then we have to solve for each of the factors.
\[
\Rightarrow \tan x + {\tan ^3}x + 3{\tan ^2}x + \tan x - 1 = 0 \\
\Rightarrow (\tan x + 1)(\tan 2x + 2\tan x - 1) = 0 \\
\]
After the factorisation, we are left with two trigonometric equations. Now let us further simplify those trigonometric equations separately and find the possible values for the equations.
\[
\Rightarrow \tan x = - 1\;or\;\tan 2x = 1 \\
\Rightarrow x = \dfrac{{3\pi }}{4},\dfrac{\pi }{8},\dfrac{{5\pi }}{8} \\
\]
So, option (C) is the correct answer.
Note: 1. If tan θ or sec θ is involved in the equation then θ ≠ odd multiple of π/2.
2. If cot θ or cosec θ is involved in the equation then θ ≠ multiple of π or 0.
Trigonometry is full of formulas and the students are advised to learn all the trigonometric formulas including the trigonometry basics so as to remain prepared for examination. Students must practice various trigonometry problems based on trigonometric ratios and trigonometry basics so as to get acquainted with the topic.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

